VI. VOLET SANITAIRE DE L'ETUDE D'IMPACT

VI.1. PREAMBULE

La partie suivante est réalisée conformément à la Circulaire du 9 août 2013 relative à la démarche de prévention et de gestion des risques sanitaires des installations classées soumises à autorisation.

Le site est soumis à la Directive IED. Par conséquent, cette étude comprendra une Interprétation de l'État des Milieux (IEM) et si besoin une Évaluation du Risque Sanitaire (ERS).

Le cadre méthodologique choisi comme structure de référence est celui des guides suivants :

- le guide méthodologique INERIS de Septembre 2021 sur la démarche intégrée pour l'évaluation de l'état des milieux et des risques sanitaires,
- le guide méthodologique INERIS de juillet 2003 sur l'évaluation des risques sanitaires qui définit les principes généraux de l'évaluation des risques sanitaires,
- le guide pour l'analyse du volet sanitaire des études d'impact février 2000 de l'INVS.

Le guide sur l'Évaluation de l'état des milieux et des risques sanitaires de l'INERIS de Septembre 2021, précise que l'évaluation des risques sanitaires concerne l'impact des rejets atmosphériques (canalisés et diffus) et aqueux de l'installation classée sur l'homme (uniquement les rejets directs), exposé directement ou indirectement après transferts via les milieux environnementaux (air, sols, eaux superficielles et/ou souterraines et/ou chaîne alimentaire, etc.).

Au regard des thèmes de l'étude d'impact développés ci-avant, le fonctionnement des installations engendrera des effluents aqueux et des rejets atmosphériques.

Cependant, comme présenté dans l'étude d'impact, le projet ne sera pas générateur de rejets aqueux directs au milieu naturel. Par conséquent, ce domaine ne sera pas développé dans ce volet sanitaire.

Il s'agit alors d'étudier les risques chroniques liés à une exposition à long terme des populations riveraines uniquement aux polluants atmosphériques émis par le site. Ces populations sont positionnées hors périmètre du site et dans le domaine d'étude appelé aussi zone d'étude.

Enfin, pour rappel, pour réaliser l'étude des risques sanitaires, le guide recommandé intitulé « Évaluation de l'état des milieux et des risques sanitaires Démarche intégrée pour la gestion des émissions de substances chimiques par les installations classées ; référencé : Deuxième édition de l'INERIS de Septembre 2021 » a été utilisé.

Et, dans ce guide, il est précisément noté en page 76 que « l'évaluation des risques attribuables à une seule installation ne permet pas de caractériser le risque global encouru par les populations du fait de l'ensemble des sources de pollution. Cette question, aussi légitime soit-elle, ne fait pas partie des objectifs de l'étude d'impact d'une ICPE. En effet, l'objectif de l'étude d'impact est d'évaluer les risques attribuables à un projet, et non pas le risque total encouru par les populations autour de l'installation ». Compte tenu de ces éléments, le bruit de fond de la zone d'étude ne sera pas pris en compte dans la présente étude.

VI.2. METHODOLOGIE

Comme indiqué précédemment, le cadre méthodologique de la présente évaluation des risques sanitaires est basé sur 3 guides. Cette méthodologie est basée sur les étapes suivantes :

- Évaluation des émissions de l'installation : cette étape vise à :
 - o décrire les sources d'émission et des substances émises (ici rejets atmosphériques),
 - o établir un bilan quantitatif des flux,
 - o vérifier la conformité des émissions.
- Évaluer les enjeux et les voies d'exposition au sein de la zone d'étude :
 - o description de la zone d'étude, des populations et des usages,
 - déterminer les substances à étudier et leurs caractéristiques,
 - o identifier les voies d'exposition afin de bâtir le schéma conceptuel, c'est-à-dire de déterminer, sur la base des éléments identifiés précédemment, les sources d'émissions pour lesquelles le schéma Source de dangers / Vecteur de transfert / Cibles susceptibles d'être atteintes par les pollutions est identifié.
- Évaluation de l'état des milieux (démarche d'Interprétation de l'État des Milieux (IEM): cette étape doit permettre de fixer des priorités pour la suite de l'étude et pour la gestion des émissions de l'installation contribuant à la protection des enjeux identifiés dans le schéma conceptuel. Cette évaluation se base sur les mesures réalisées (ou sur des données bibliographiques) dans les milieux d'exposition autour de l'installation pour :
 - o s'agissant d'une installation nouvelle, définir l'état initial des milieux, qui constitue un état de référence « historique » de l'état de l'environnement exempt de l'impact de l'installation,
 - déterminer si l'état actuel des milieux est compatible avec les usages et apporter des indications sur une vulnérabilité potentielle vis-à-vis d'une ou plusieurs substances émises par l'installation.

Cette étape IEM se déroule en deux phases, la première qui consiste à évaluer la dégradation des compartimentaux environnementaux susceptibles d'être affectés par les rejets de l'installation (ici l'air, le sol, les produits végétaux et animaux).

Si ces milieux ne montrent pas de dégradation notable, la démarche peut s'interrompre.

En revanche, lorsque les variations dans le temps ou dans l'espace montrent une dégradation des milieux, il devra être estimé dans quelle mesure cet état dégradé peut compromettre ou non la compatibilité des milieux avec les usages. Cette démarche consiste à comparer les concentrations mesurées avec les valeurs réglementaires ou indicatives sur la qualité des milieux applicables, ou si elles n'existent pas, à réaliser une quantification partielle des risques.

- Évaluation prospective des risques sanitaires : cette étape a pour objectif d'estimer les risques sanitaires potentiellement encourus par les populations voisines attribuables aux émissions futures de l'installation, via :
 - l'identification des dangers (effets sur la santé et devenir dans l'environnement des substances retenues),
 - o l'évaluation de la relation dose-réponse, c'est-à-dire les VTR de chaque substance,
 - la caractérisation des expositions via une modélisation de la dispersion des émissions futures retenues sur la base des caractéristiques des sources d'émissions décrites précédemment et de la zone d'étude (météorologie, topographie, etc.), et quantifier les éventuels transferts vers les autres milieux,

- o la caractérisation du risque : cette étape permet de calculer les niveaux de risques pour l'ensemble des substances susceptibles de présenter des risques sanitaires sur la base des résultats de la modélisation et des VTR des substances. Pour les substances ne disposant pas de VTR mais uniquement de valeurs guide, une comparaison des résultats de la modélisation à cette valeur guide est réalisée.
- Conclusion de l'Évaluation des Risques Sanitaires : afin de pouvoir vérifier la compatibilité du projet dans l'environnement dans lequel il s'implante, les résultats de l'évaluation prospective des risques sanitaires doivent être étudiés conjointement avec les résultats de l'évaluation de l'état de milieux grâce à la grille d'évaluation issue de la circulaire du 9 août 2013 ; ceci afin d'établir les prescriptions de l'arrêté d'autorisation.

VI.3. ÉVALUATION DES EMISSIONS DE L'INSTALLATION

VI.3.1 SYNTHESE DE L'ETUDE D'IMPACT

VI.3.1.1 SITUATION AUTORISEE

L'inventaire des sources réalisé dans l'étude d'impact en situation autorisée est repris dans le tableau de synthèse ci-dessous.

Tableau 175. Sources de rejets en situation autorisée

Milieu physique	Émissions	Mode de traitement et de gestion	Mode de fonctionnement	Impact résiduel
	Eaux sanitaires	Réseau du SIZIAF + STEP du SIZIAF puis milieu naturel (Canal d'Aire à la Bassée)	Normal et dégradé	Impact brut faible, pas de démarche ERC
Eaux de surface Eaux souterraines Sol/sous-sol	Eaux pluviales	Collecte dans le réseau d'assainissement de ACC puis bassins puis réseau AP SIZIAF puis milieu naturel (Canal d'Aire à la Bassée)	Normal et dégradé	Impact brut faible, pas de démarche ERC
	Eaux de purges des utilités, purges des TAR, les condensats et les purges des installations de traitement/chaudières	Réseau du SIZIAF + STEP du SIZIAF puis milieu naturel (Canal d'Aire à la Bassée)	Normal et dégradé	Impact brut faible, pas de démarche ERC
	Dépotage des produits liquides	Emissions diffuses limitées	Normal et dégradé	Négligeable *
	Events des cuves vrac (électrolytes, solvant 1)	Emissions diffuses limitées	Normal et dégradé	Négligeable *
	Rejets canalisés des activités de mélanges de matières premières, préparation des encres (bâtiment Mixing)	Emissions canalisées : systèmes de filtration, systèmes de collecte et de récupération / régénération, laveur de gaz	Normal et dégradé	Moyen
	Rejets canalisés des activités d'enduction, séchage, refendage (bâtiment Coating)	Emissions canalisées : systèmes de filtration, systèmes de collecte et de récupération / régénération, laveur de gaz	Normal et dégradé	Moyen
Air	Rejets canalisés des activités de calendrage, refendage, détourage (zones Calendering et Notching)	Emissions canalisées : systèmes de filtration	Normal et dégradé	Moyen
	Rejets canalisés des activités d'assemblage en cellules (zones Stacking et Cell Assembly)	Emissions canalisées : systèmes de filtration	Normal et dégradé	Moyen
	Rejets canalisés des activités de cuisson et de remplissage en électrolytes (zones Baking et Filling)	Emissions canalisées : systèmes de filtration, système de traitement par charbon actif	Normal et dégradé	Moyen
	Rejets canalisés des activités de formation (bâtiment Electric Formation Antifeu)	Emissions canalisées : système de traitement par charbon actif	Normal et dégradé	Moyen

Milieu physique	Émissions	Mode de traitement et de gestion	Mode de fonctionnement	Impact résiduel
	Rejets canalisés des activités d'assemblage en module	Emissions canalisées : systèmes de filtration, système de traitement par charbon actif	Normal et dégradé	Faible
Air	Rejets canalisés des chaudières vapeur et eau chaude fonctionnant au gaz naturel	Emissions canalisées des gaz de combustion, brûleurs bas-NOx	Normal et dégradé	Faible
	Rejets canalisés des Centrales dessiccantes (CTA) fonctionnant au gaz naturel	Emissions canalisées des gaz de combustion	Normal et dégradé	Négligeable

^{*} Les transfert d'électrolytes s'effectueront sous azote avec récupération des vapeurs pour garantir l'inertage du ciel gazeux.

VI.3.1.2 SITUATION MODIFIEE

L'inventaire des sources réalisé dans l'étude d'impact dans le domaine est synthétisé ci-dessous.

Tableau 176. Sources de rejets en situation modifiée

Milieu physique	Émissions	Mode de traitement et de gestion	Mode de fonctionnement	Impact résiduel
	Eaux sanitaires	Réseau du SIZIAF + STEP du SIZIAF puis milieu naturel (Canal d'Aire à la Bassée)	Normal et dégradé	Impact brut faible, pas de démarche ERC
Eaux de surface Eaux souterraines Sol/sous-sol	Eaux pluviales	Collecte dans le réseau d'assainissement de ACC puis bassins puis réseau AP SIZIAF puis milieu naturel (Canal d'Aire à la Bassée)	Normal et dégradé	Impact brut faible, pas de démarche ERC
300, 300, 300	Eaux de purges des utilités, les condensats et les purges des installations de traitement/chaudières	Réseau du SIZIAF + STEP du SIZIAF puis milieu naturel (Canal d'Aire à la Bassée)	Normal et dégradé	Impact brut faible, pas de démarche ERC
	Dépotage des produits liquides	Emissions diffuses limitées	Normal et dégradé	Négligeable *
	Events des cuves vrac (électrolytes, solvant 1)	Emissions diffuses limitées	Normal et dégradé	Négligeable *
Air	Rejets canalisés des activités de mélanges de matières premières, préparation des encres (bâtiments Mixing)	Emissions canalisées : systèmes de filtration, systèmes de collecte et de récupération / régénération, laveur de gaz	Normal et dégradé	Moyen
	Rejets canalisés des activités d'enduction, séchage, refendage (bâtiments Coating)	Emissions canalisées : systèmes de filtration, systèmes de collecte et de récupération / régénération, laveur de gaz	Normal et dégradé	Moyen
	Rejets diffus des activités de calendrage et refendage (zones Calendering et Notching)	Emissions captées, traitées et rejetées dans les locaux (air ambiant)	Normal	/

Milieu physique	Émissions	Mode de traitement et de gestion	Mode de fonctionnement	Impact résiduel
	Rejets des activités de calendrage en situation accidentelle	/	Dégradé	/
	Rejets canalisés des activités de détourage (zones Calendering et Notching)	Emissions canalisées : systèmes de filtration	Normal et dégradé	Moyen
	Rejets diffus des activités d'empilage des électrodes (zones Stacking et Cell Assembly)	Emissions captées, traitées et rejetées dans les locaux (air ambiant)	Normal	/
	Rejets des activités d'empilage des électrodes et d'assemblage des cellules en situation accidentelle	/	Dégradé	/
	Rejets canalisés des activités d'assemblage en cellules (zones Stacking et Cell Assembly)	Emissions canalisées : systèmes de filtration	Normal et dégradé	Moyen
	Rejets canalisés des activités de cuisson et de remplissage en électrolytes (zones Baking et Filling)	Emissions canalisées : systèmes de filtration, système de traitement par charbon actif	Normal et dégradé	Moyen
	Rejets canalisés des activités de formation (bâtiments Electric Formation Antifeu)	Emissions canalisées : système de traitement par charbon actif	Normal et dégradé	Moyen
	Rejets des activités de pré- charge (zap) en situation accidentelle	/	Dégradé	/
	Rejets canalisés des activités d'assemblage en module	Emissions canalisées : systèmes de filtration, système de traitement par charbon actif	Normal et dégradé	Faible
Air	Rejets canalisés des chaudières Vapeurs fonctionnant au gaz naturel	Emissions canalisées des gaz de combustion, brûleurs bas-NOx	Normal et dégradé	Faible
All	Rejets canalisés des Centrales dessiccantes (CTA) fonctionnant au gaz naturel	Emissions canalisées des gaz de combustion	Normal et dégradé	Négligeable

^{*} Les transfert d'électrolytes s'effectueront sous azote avec récupération des vapeurs.

VI.3.2 DESCRIPTION DES SOURCES ET DES SUBSTANCES EMISES

VI.3.2.1 SITUATION AUTORISEE

Le tableau suivant présente les différentes sources de rejet du projet en situation autorisée. En situation autorisée, les points de rejets atmosphériques concernent uniquement les rejets liés au bloc 1.

Tableau 177. Description des sources en situation autorisée

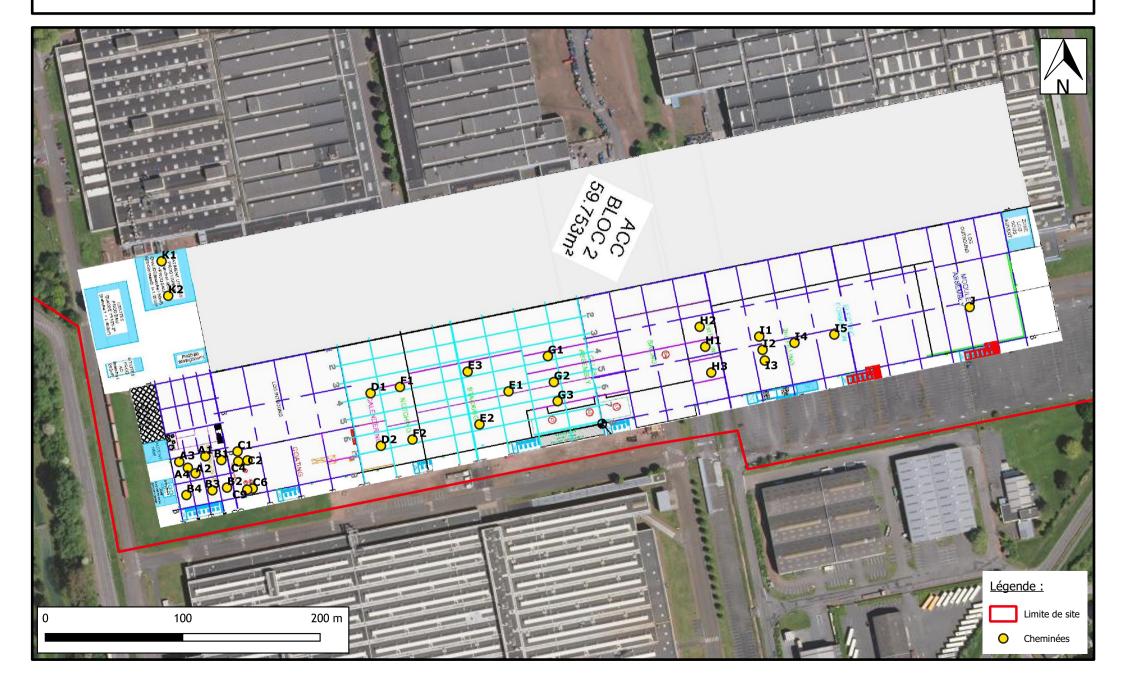
Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises retenues	Impact potentiel ?
Eaux de surface	/	Eaux sanitaires	Canalisée	/	Composés organiques, MES, DCO, DBO ₅ , azote et phosphore	NON
Eaux souterraines Sol et sous-sol	/	Eaux pluviales	Canalisée	2 l/s/ha	MES, DCO, hydrocarbures	NON
	/	Eaux de purges des utilités, les condensats et les purges des installations de traitement/chaudières	Canalisée	/	DCO, MES, azote	NON
	A1	Station de dosage (cathode)	Canalisée	45 000 Nm³/h	Poussières, métaux, HF	OUI, i mpact potentiel sur la qualité de l'air et des sols
	A2	Mélanges (cathode)	Canalisée	9 840 Nm³/h	Poussières, métaux, COV issus du solvant 1	OUI, i mpact potentiel sur la qualité de l'air et des sols
	А3	Captation ambiant (cathode)	Canalisée	6 300 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	A4	Laveur de gaz (cathode)	Canalisée	61 140 Nm³/h	COV issus du solvant 1	OUI, impact potentiel sur la qualité de l'air
Air/Sol (retombées)	B1	Station de dosage (anode)	Canalisée	60 000 Nm³/h	Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols
	В2	Mélanges (anode)	Canalisée	4 800 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	В3	Captation ambiant (anode)	Canalisée	7 200 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	B4	Installations de nettoyage (anode et cathode)	Canalisée	3 500 Nm³/h	COV issus du solvant 1	OUI, i mpact potentiel sur la qualité de l'air
	C1	Extraction vapeur avant passage dans le four (cathode)	Canalisée	14 400 Nm³/h	COV issus du solvant 1	OUI, i mpact potentiel sur la qualité de l'air
	C2	Traitement Ozone (cathode)	Canalisée	1 000 Nm³/h	Ozone	OUI, impact potentiel sur la qualité de l'air

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises retenues	Impact potentiel ?
	C3	Chambre sèche (cathode) (**)	Canalisée	/	H ₂ O	Non
	C4	Vapeurs solvantées du condenseur (récupération solvant 1)	Canalisée	50 000 Nm³/h	COV issus du solvant 1	OUI, impact potentiel sur la qualité de l'air
	C5	Extraction vapeur avant passage dans le four (anode) (**)	Canalisée	/	H₂O	Non
	C6	Traitement Ozone	Canalisée	1 000 Nm³/h	Ozone	OUI, impact potentiel sur la qualité de l'air
	C7	Chambre sèche (anode) (**)	Canalisée	/	H ₂ O	Non
	C8	Unité de condensation en anode (uniquement échangeur de chaleur) (**)	Canalisée	/	H ₂ O	Non
	С9	Evacuation général de l'enduction	Canalisée	120 000 Nm³/h	COV issus du solvant 1	OUI, i mpact potentiel sur la qualité de l'air
	D1	Nettoyage de la bande de calendrage (cathode)	Canalisée	17 400 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	D2	Nettoyage de la bande de calendrage (anode)	Canalisée	17 400 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
Air/Sol (retombées)	E1	Vide air - séchage du séparateur	Canalisée	2 160 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
(recombees)	E2	Extraction de l'empilement (zone anode et cathode)	Canalisée	100 000 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	E3	Extraction de l'empilement (zone anode et cathode)	Canalisée	100 000 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	F1	Découpe laser + poussières (cathode)	Canalisée	25 200 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	F2	Découpe laser + poussières (anode)	Canalisée	25 200 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	G1		Canalisée	4 543 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	G2	Zone d'assemblage des cellules : soudage laser, scellage	Canalisée	4 543 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	G3		Canalisée	4 543 Nm³/h	Poussières, métaux	OUI, i mpact potentiel sur la qualité de l'air et des sols
	G4	Cuisson des éléments montés (**)	Canalisée	/	H ₂ O	Non

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises retenues	Impact potentiel ?
	H1	Zone de remplissage	Canalisée	5 134 Nm³/h	COV, HF	OUI, impact potentiel sur la qualité de l'air
	H2	électrolyte	Canalisée	5 134 Nm³/h	COV, HF	OUI, impact potentiel sur la qualité de l'air
	НЗ	Zone de remplissage électrolyte occasionnelle	Canalisée	5 134 Nm³/h	COV, HF	OUI, impact potentiel sur la qualité de l'air
	I1	Dispositif de formation	Canalisée	284 400 Nm³/h	COV annexe IVd, CO	OUI, impact potentiel sur la qualité de l'air
	12	Dispositif de classement	Canalisée	284 400 Nm³/h	COV annexe IVd, CO	OUI, impact potentiel sur la qualité de l'air
	13	Ventilation étapes	Canalisée	1 200 Nm³/h	COV annexe IVd, CO	OUI, impact potentiel sur la qualité de l'air
	14	Complément remplissage électrolyte	Canalisée	7 912 Nm³/h	COV, HF	OUI, impact potentiel sur la qualité de l'air
	15	Scellement final	Canalisée	864 Nm³/h	COV, HF	OUI, impact potentiel sur la qualité de l'air
	J	Cartérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	Canalisée	2 000 Nm³/h	Poussières, Métaux, COV	OUI, impact potentiel sur la qualité de l'air et des sols
Air/Sol (retombées)	K1	Chaudières de Puissance max 27,5 MW Max Puissance moyenne 15,5 MW	Canalisée	43 050 Nm³/h	NOx, CO	OUI, impact potentiel sur la qualité de l'air
	K2	Chaudières de Puissance 4,5 MW	Canalisée	7 043 Nm³/h	NOx, CO	OUI, impact potentiel sur la qualité de l'air
	L1	Bruleur GN de régénération 700KW (*)	Canalisée	/	NOx, CO	Non, faible puissance
	L2	Bruleur GN de régénération 700KW(*)	Canalisée	/	NOx, CO	Non, faible puissance
	L3	Bruleur GN de régénération 700KW (*)	Canalisée	/	NOx, CO	Non, faible puissance
	L4	Bruleur GN de régénération 600KW (*)	Canalisée	/	NOx, CO	Non, faible puissance
	L5	Générateur GN 100KW (*)	Canalisée	/	NOx, CO	Non, faible puissance
	L6	Générateur GN 120KW (*)	Canalisée	/	NOx, CO	Non, faible puissance
	L7	Générateur GN 280KW (*)	Canalisée	/	NOx, CO	Non, faible puissance
	/	Activités de dépotage	Diffuse	/	COV	Non, faibles émissions discontinues
	/	Events des cuves vracs	Diffuse	/	COV	Non, faibles émissions discontinues

^(*) Prescriptions réglementaires non applicables selon l'arrêté du 03 Août 2018 du fait de leur puissance thermique nominale unitaire < 1MWh

^(**) Evacuation d'humidité, émissions uniquement de vapeurs d'eau


Les rejets canalisés sont retenus en fonction des débits et des substances potentiellement émises pouvant avoir un impact sur la qualité de l'air.

Dans la situation autorisée, les seules sources retenues comme susceptibles d'avoir un impact a priori non négligeable sur l'environnement et la santé sont principalement des rejets atmosphériques.

Le plan suivant présente la localisation de ces rejets en situation autorisée.

Vue aérienne de localisation des points de rejets - ACC à Douvrin

VI.3.2.2 SITUATION MODIFIEE

Le tableau suivant présente les différentes sources de rejet en situation modifiée. Les points de rejet atmosphériques correspondent aux points de rejet du bloc 1 et du bloc 2 (BBD1 + BBD2). Les caractéristiques des points de rejets du process sont identiques pour le bloc 1 et le bloc 2.

Tableau 178. Description des sources en situation modifiée

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises	Incidence potentielle ?
Eaux de surface	/	Eaux sanitaires	Canalisée	/	Composés organiques, MES, DCO, DBO5, azote et phosphore	ИОИ
Eaux souterraines	/	Eaux pluviales	Canalisée	2 l/s/ha	MES, DCO, hydrocarbures	NON
Sol et sous-sol	/	Eaux de purges des utilités, les condensats et les purges des installations de traitement/chaudières	Canalisée	/	DCO, MES, azote	NON
	A1	Station de dosage (cathode + anode) Mélanges (anode) mixing	Canalisée	20 000 Nm³/h gaz sec	HF Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols.
	A2	Mélanges (cathode) Installations de nettoyage (anode et cathode)	Canalisée	24 000 Nm³/h gaz sec	Poussières, métaux, N ₂ , COV issus du solvant 1	OUI, impact potentiel sur la qualité de l'air et des sols
	C1	Traitement Ozone (cathode)	Canalisée	6 000 Nm ³ /h gaz sec	Ozone	OUI, impact potentiel sur la qualité de l'air
	C2	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	Canalisée	40 000 Nm³/h gaz sec	COV issus du solvant 1	OUI, impact potentiel sur la qualité de l'air
Air/Sol (retombées)	C3	Evacuation général de l'enduction anode (2 CTA	Canalisée	170 000 Nm ³ /h gaz sec	H ₂ O	NON, pas de rejet de substances
	C4	des dryers fours)	Canalisée	170 000 Nm ³ /h gaz sec	H ₂ O	NON, pas de rejet de substances
	D1	Rejets accidentels lors de	Canalisée	30 000 Nm³/h gaz sec	/	NON, pas de rejet en situation normale
	D2	l'étape de calendrage	Canalisée	30 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	E1	Rejets accidentels lors de l'étape d'empilement des électrodes	Canalisée	108 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale

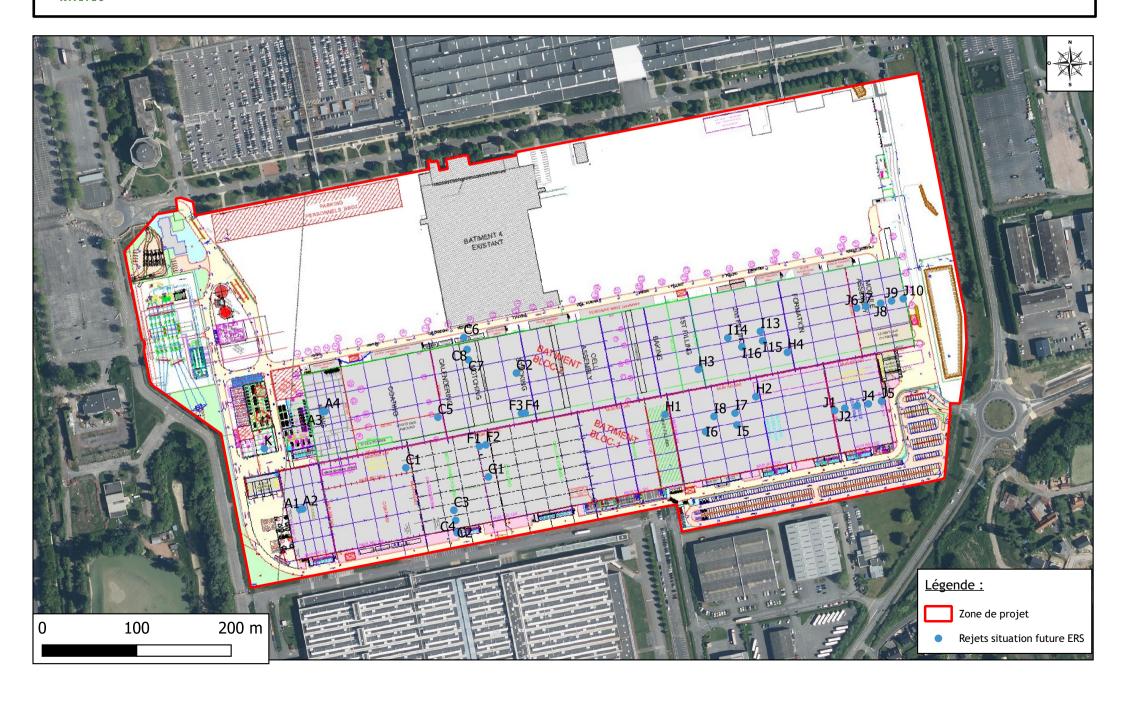
Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises	Incidence potentielle ?
	E2		Canalisée	108 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	F1	Découpe laser + poussières (cathode)	Canalisée	27 000 Nm³/h gaz sec	Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols
	F2	Découpe laser + poussières (anode)	Canalisée	27 000 Nm³/h gaz sec	Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols
	G1	Zone d'assemblage des cellules : soudage laser, scellage	Canalisée	30 000 Nm³/h gaz sec	Poussières, métaux, N ₂ , He, H ₂ O, CO ₂ , CH ₄	OUI, impact potentiel sur la qualité de l'air et des sols
	G3	Zone d'assemblage des cellules - situation accidentelle	Canalisée	30 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	H1	Zone de remplissage électrolyte	Canalisée	32 000 Nm³/h gaz sec	COV, HF, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
Air/Sol (retombées)	H2	Remplissage	Canalisée	17 000 Nm³/h gaz sec	COV, HF, N ₂ , He	OUI, impact potentiel sur la qualité de l'air et des sols
	I1		Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	12	Rejets au niveau de	Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	13	l'étape ZAP en situation accidentelle	Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	14		Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	15		Canalisée	65 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	16	1ère charge	Canalisée	27 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	17		Canalisée	45 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises	Incidence potentielle ?
	18		Canalisée	27 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J1		Canalisée	5 000 Nm ³ /h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J2		Canalisée	5 000 Nm ³ /h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J3	Caractérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	Canalisée	5 000 Nm ³ /h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J4		Canalisée	5 000 Nm³/h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J5		Canalisée	5 000 Nm ³ /h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
Air/Sol (retombées)	K (K1 + K2)	Chaudières au gaz naturel (2 x 22 300 kW)	Canalisée	43 050 Nm ³ /h gaz sec	NOx, CO	OUI, impact potentiel sur la qualité de l'air
	L1	Brûleurs des centrales dessiccantes	Canalisée	1	NOx, CO	NON, faible puissance
	L2	Brûleurs des centrales dessiccantes	Canalisée	1	NOx, CO	NON, faible puissance
	L3	Brûleurs des centrales dessiccantes	Canalisée	/	NOx, CO	NON, faible puissance
	L4	Brûleurs des centrales dessiccantes	Canalisée	/	NOx, CO	NON, faible puissance
	A3	Station de dosage (cathode + anode) Mélanges (anode) mixing	Canalisée	20 000 Nm³/h gaz sec	HF Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols.
	A4	Mélanges (cathode) Installations de nettoyage (anode et cathode)	Canalisée	24 000 Nm³/h gaz sec	Poussières, métaux, N ₂ , COV issus du solvant 1	OUI, impact potentiel sur la qualité de l'air et des sols
	C5	Traitement Ozone (cathode)	Canalisée	6 000 Nm ³ /h gaz sec	Ozone	OUI, impact potentiel sur la qualité de l'air
	C6	Vapeurs solvantées du condenseur/Scrubber (récupération COV issus du solvant 1) 4 lignes	Canalisée	40 000 Nm³/h gaz sec	COV issus du solvant 1	OUI, impact potentiel sur la qualité de l'air

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises	Incidence potentielle ?
	C7	Evacuation général de l'enduction anode (2 CTA	Canalisée	170 000 Nm ³ /h gaz sec	H ₂ O	NON, pas de rejet de substances
	C8	des dryers fours)	Canalisée	170 000 Nm ³ /h gaz sec	H₂O	NON, pas de rejet de substances
	D3	Rejets accidentels lors de	Canalisée	30 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	D4	l'étape de calendrage	Canalisée	30 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	F3	Rejets accidentels lors de l'étape d'empilement des	Canalisée	108 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	F4	électrodes	Canalisée	108 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	E3	Découpe laser + poussières (cathode)	Canalisée	27 000 Nm³/h gaz sec	Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols
Air/Sol (retombées)	E4	Découpe laser + poussières (anode)	Canalisée	27 000 Nm³/h gaz sec	Poussières, métaux	OUI, impact potentiel sur la qualité de l'air et des sols
	G2	Zone d'assemblage des cellules : soudage laser, scellage	Canalisée	30 000 Nm³/h gaz sec	Poussières, métaux, N ₂ , He, H ₂ O	OUI, impact potentiel sur la qualité de l'air et des sols
	G4	Zone d'assemblage des cellules - situation accidentelle	Canalisée	30 000 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	НЗ	Zone de remplissage électrolyte	Canalisée	32 000 Nm³/h gaz sec	COV, HF, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	H4	Remplissage	Canalisée	17 000 Nm³/h gaz sec	COV, HF, N ₂ , He	OUI, impact potentiel sur la qualité de l'air et des sols
	19		Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	I10	Rejets au niveau de l'étape ZAP en situation accidentelle	Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	l11		Canalisée	1 800 Nm ³ /h gaz sec	1	NON, pas de rejet en situation normale

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises	Incidence potentielle ?
	l12		Canalisée	1 800 Nm ³ /h gaz sec	/	NON, pas de rejet en situation normale
	l13	1ère charge	Canalisée	65 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	114		Canalisée	27 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	l15	Tere charge	Canalisée	45 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	I16		Canalisée	27 000 Nm³/h gaz sec	COV, COV annexe IVd, CO, HF, O ₃ , H ₂ , CH ₄ , O ₂ , CO ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J6	Caractérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	Canalisée	5 000 Nm ³ /h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
Air/Sol (retombées)	J7		Canalisée	5 000 Nm³/h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J8		Canalisée	5 000 Nm³/h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J9		Canalisée	5 000 Nm³/h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	J10		Canalisée	5 000 Nm ³ /h gaz sec	Poussières, métaux, COV, N ₂	OUI, impact potentiel sur la qualité de l'air et des sols
	L5	Brûleurs des centrales dessiccantes	Canalisée	/	NOx, CO	NON, faible puissance
	L6	Brûleurs des centrales dessiccantes	Canalisée	/	NOx, CO	NON, faible puissance
	L7	Brûleurs des centrales dessiccantes	Canalisée	/	NOx, CO	NON, faible puissance
	L8	Brûleurs des centrales dessiccantes	Canalisée	/	NOx, CO	NON, faible puissance
	/	Activités de dépotage	Diffuse	/	COV	NON, faibles émissions discontinues

Milieu récepteur	N°	Origine des émissions	Type de source	Débit du rejet	Substances émises	Incidence potentielle ?
	/	Events des cuves vracs	Diffuse	/	COV	NON, faibles émissions discontinues


Les rejets canalisés sont retenus en fonction des débits et des substances potentiellement émises pouvant avoir un impact sur la qualité de l'air.

En conclusion, les seules sources retenues en situation future comme susceptibles d'avoir un impact a priori non négligeable sur l'environnement et la santé sont toujours des rejets atmosphériques.

En situation autorisée, pour un bloc, 34 points de rejets étaient retenus pour l'évaluation des risques sanitaires. La société ACC a optimisé, regroupé et supprimé certains points de rejet pour diminuer le nombre de cheminée et ajuster les caractéristiques des points de rejets. En situation modifiée, 20 points de rejets sont retenus pour BBD1 et 18 pour BBD2, soit au total 38 points de rejets.

Le plan suivant présente la localisation de ces rejets.

Points de rejets retenus en situation modifiée

VI.3.3 BILAN QUANTITATIF DES FLUX

Le chapitre suivant présente le bilan quantitatif des flux pour les sources susceptibles d'avoir une incidence à priori non négligeable sur l'environnement et la santé.

VI.3.3.1 SITUATION AUTORISEE

VI.3.3.1.1 BILAN MAJORANT

Le bilan majorant présenté dans le précédent DDAE est basé sur les valeurs limites d'émissions pour les rejets atmosphériques canalisés retenus.

Les tableaux ci-après rappellent les caractéristiques des rejets canalisés et présentent les valeurs de concentration et de flux horaires, journaliers et annuels en polluants considérés en situation autorisée.

Les valeurs de concentration considérées sont issues de l'arrêté du 02 Février 1998 modifié. Les flux tiennent compte des dispositifs de traitement envisagés.

Par exemple, il est pris en compte un abattement de 85 % des flux de poussières et de métaux pour les activités de préparation et de mélange des encres (Mixing) ; et un abattement de 95 % pour les autres activités (étapes du Calendrage jusqu'à l'assemblage des modules).

Un abattement de 55 % des COVNM pour les activités de remplissage d'électrolytes est estimé avec la mise en place de charbon actif.

En l'absence de retour d'expérience sur les activités et l'efficacité optimale du système de traitement pour les valeurs mesurées en concentrations en COV issus du COV issus du solvant 1, la Valeur limite d'Emission (VLE) maximale sur la base de 2 mg/m³ avait été demandée et ont été retenue.

En l'absence de retour d'expérience sur les activités de traitement à l'ozone et de mesures de concentrations, la Valeur limite d'Emission (VLE) maximale pour $l'O_3$ sur la base de 10 mg/m³ avait été considérée.

Le temps de fonctionnement est représentatif du temps de fonctionnement des activités de process du site à savoir : 24h/24, 329 jours/an. Les installations de combustion pourront fonctionner 351 jours/an (prise en compte de 2 semaines d'arrêt technique).

Caractéristiques des différents points de rejets atmosphériques retenues pour le site ACC en situation autorisée

			Coordonnées	Lambert 93 (m)							Temps de	Abattement
Zone	N°de rejet	Equipement	х	Y	Débit moyen (Nm³/h)	Débit max. (Nm³/h)	Vitesse (m/s)	Hauteur (m)	Diamètre (mm)	Température (°C)	fonctionnement en h/an	considéré pour l'estimation des flux
	A1	Station de dosage (cathode)	688950	7046604	13500	45000	8	41,57	630	50	7 896	
	A2	Mélanges (cathode)	688942	7046592	2172	9840	8	41,57	250	50	7 896	
	A3	Captation ambiant (cathode)	688931	7046600	6300	6300	8	41,57	450	50	7 896	Abattement de 85 %
	A4	Laveur de gaz (cathode)	688961	7046601	21972	61140	8	41,57	500	22	7 896	sur les flux de poussières et métaux
MIXING	B1	Station de dosage (anode)	688965	7046581	18000	60000	8	41,57	710	30	7 896	Abattement de 50 %
	B2	Mélanges (anode)	688955	7046579	40	4800	5	41,57	80	30	7 896	sur le flux de
	В3	Captation ambiant (anode)	688936	7046576	7200	7200	8	41,57	450	30	7 896	fluorure d'hydrogène
	B4	Installations de nettoyage (anode et cathode)	688973	7046607	3500	3500	5	41,57	355	30	7 896	
	C1	Extraction vapeur avant passage dans le four (cathode)	688980	7046601	14400	14400	8	41,57	630	60	7 896	
	C2	Traitement Ozone (cathode)	688979	7046594	1000	1000	5	39,06	200	22	7 896	
COATING	C4	Vapeurs solvantées du condenseur (récupération solvant 1)	688984	7046580	50000	50000	8	41,57	500	60	7 896	/
	C6	Traitement Ozone	688980	7046580	1000	1000	5	39,49	200	22	7 896	
	С9	Evacuation général de l'enduction	689170	7046651	105000	120000	8	41,57	1600	22	7 896	
CALENDERING	D1	Nettoyage de la bande de calendrage (cathode)	689149	7046627	17400	17400	8	20,87	710	22	7 896	Abattement de 95 % sur les flux de
CALENDERING	D2	Nettoyage de la bande de calendrage (anode)	689140	7046666	17400	17400	8	20,87	710	22	7 896	poussières et métaux
	E1	Vide air - séchage du séparateur	689091	7046654	1 800	2 160	5	16,77	250	22	7 896	
STACKING	E2	Extraction de l'empilement (zone anode et cathode)	689100	7046616	100 000	100 000	8	18,64	1000	22	7 896	Abattement de 95 % sur les flux de
	E3	Extraction de l'empilement (zone anode et cathode)	689199	7046677	100 000	100 000	8	18,64	1000	22	7 896	poussières et métaux
NOTCHING	F1	Découpe laser + poussières (cathode)	689203	7046658	15211	25200	8	16,77	710	22	7 896	Abattement de 95 % sur les flux de
NOTCHING	F2	Découpe laser + poussières (anode)	689206	7046644	15211	25200	8	16,8	710	22	7 896	poussières et métaux
	G1		689284	7046678	4543	4543	5	16,77	355	22	7 896	Abattement de 95 %
CELL ASSEMBLY	G2	Zone d'assemblage des cellules : soudage laser, scellage	689313	7046684	4543	4543	5	16,77	355	22	7 896	sur les flux de
	G3	beautige tuber, beautige in	689309	7046698	4543	4543	5	16,77	355	22	7 896	poussières et métaux
	H1	Zone de remplissage électrolyte	689353	7046691	5134	5134	8	22,33	400	22	7 896	
FILLING	H2	Zone de l'emptissage electrotyte	689355	7046681	5134	5134	8	22,33	400	22	7 896	Abottomont do FO %
	Н3	Zone de remplissage électrolyte occasionnelle	689357	7046674	5134	5134	8	22,33	400	22	7 896	Abattement de 50 % sur le flux de fluorure d'hydrogène
	I1	Dispositif de formation	689378	7046686	4266	284400	8	22,33	355	22	7 896	Abattement de 55 %
EL ECTRIC	12	Dispositif de classement	689407	7046692	52614	284400	8	22,33	1250	22	7 896	sur le flux de COVNM
ELECTRIC FORMATION	13	Ventilation étapes	689506	7046712	1200	1200	5	22,33	200	22	7 896	Abattement de 80 % sur le flux de COV
ANTIFEU	14	Complément remplissage électrolyte	688918	7046746	3388	7912	8	22,33	315	22	7 896	annexe IVd
	15	Scellement final	688923	7046721	864	864	5	22,33	160	22	7 896	
MODULE ASSEMBLY	J	Cartérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	689249	7046640	2000	2000	5	22,33	250	22	7 896	Abattement de 95 % sur les flux de poussières et métaux

			Coordonnées L	ambert 93 (m)						_	Temps de	Abattement
CHAUDIERES	N°de rejet	Equipement	x	Y	Débit moyen (Nm³/h)	Débit max. (Nm³/h)	Vitesse (m/s)	Hauteur (m)	Diamètre (mm)	Température (°C)	fonctionnement en h/an	considéré pour l'estimation des flux
CHAUDIERES VAPEUR (gaz naturel)	K1	Chaudières de Puissance max 27,5 MW Max Puissance moyenne 15,5 MW	689229	7046636	43050	43050	8	41,57	400	85	8 424	/
CHAUDIERES EAU CHAUDE (gaz naturel)	К2	Chaudières de Puissance 5,8 MW	689202	7046631	7042,5	7042,5	8	41,57	4 x 400	70	8 424	/

Concentrations et flux horaires maximaux des différents rejets atmosphériques canalisés du site ACC en situation autorisée

					Concentr	ation en n	ng/m³							F	Flux (kg/h)					
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	COV	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	cov	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
	A1	Station de dosage (cathode)	40	5	-	-	-	5	-	-	ı	0,270	0,034	-	-	-	0,113	-	-	-
	A2	Mélanges (cathode)	40	5	-	2	-	-	-	-	ı	0,059	0,007	-	0,020	-	-	-	-	
	A3	Captation ambiant (cathode)	40	5	-	-	-	-	-	-	-	0,038	0,005	-	-	-	-	-	-	-
	A4	Laveur de gaz (cathode)	-	-	-	2	-	-	-	-	-	-	-	-	0,122	-	-	-	-	-
MIXING	B1	Station de dosage (anode)	40	5	-	-	-	-	-	-	-	0,360	0,045	-	-	-	-	-	-	-
	B2	Mélanges (anode)	40	5	-	-	-	-	-	-	-	0,029	0,004	-	-	-	-	-	-	-
	В3	Captation ambiant (anode)	40	5	-	-	-	-	-	-	-	0,043	0,005	-	-	-	-	-	-	-
	B4	Installations de nettoyage (anode et cathode)	-	-	-	2	-	-	-	-	-	-	-	-	0,007	-	-	-	-	-
	C1	Extraction vapeur avant passage dans le four (cathode)	-	-	-	2	-	-	-	-	-	-	-	-	0,029	-	-	-	-	-
	C2	Traitement Ozone (cathode)	-	-	-	-	-	-	-	-	10	-	-	-	-	-	-	-	-	0,010
COATING	C4	Vapeurs solvantées du condenseur (récupération solvant 1)	-	-	-	2	-	-	-	-	-	-	-	-	0,100	-	-	-	-	-
	C6	Traitement Ozone	-	-	-	-	-	-	-	-	10	-	-	-	-	-	-	-	-	0,010
	С9	Evacuation général de l'enduction	-	-	-	2	-	-	-	-	-	-	-	-	0,240	-	-	-	-	-
CALENDERING	D1	Nettoyage de la bande de calendrage (cathode)	40	5	-	-	-	-	-	-	-	0,035	0,004	-	-	-	-	-	-	-
CALENDERING	D2	Nettoyage de la bande de calendrage (anode)	40	5	-	-	-	-	-	ı	ı	0,035	0,004	-	-	-	-	-	-	-
	E1	Vide air - séchage du séparateur	40	5	-	-	-	-	-	-	•	0,004	0,001	-	-	-	-	-	-	-
STACKING	E2	Extraction de l'empilement (zone anode et cathode)	40	5	-	-	-	-	-		1	0,200	0,025	-	-	-	-	-	-	-
	E3	Extraction de l'empilement (zone anode et cathode)	40	5	-	-	-	-	-	-	-	0,200	0,025	-	-	-	-	-	-	-
NOTCHING -	F1	Découpe laser + poussières (cathode)	40	5	-	-	-	-	-	-	-	0,050	0,006	-	-	-	-	-	-	-
NOTCHING	F2	Découpe laser + poussières (anode)	40	5	-	-	-	-	-	-	-	0,050	0,006	-	-	-	-	-	-	-
CELL.	G1	7	40	5	-	-	-	-	-	-	-	0,009	0,001	-	-	-	-	-	-	-
CELL ASSEMBLY	G2	Zone d'assemblage des cellules : soudage laser, scellage	40	5	-	-	-	-	-	-	-	0,009	0,001	-	-	-	-	-	-	<u> </u>
	G3		40	5	-	-	-	-	-	-	-	0,009	0,001	-	-	-	-	-	-	
	H1	Zone de remplissage électrolyte	-	-	110	-	-	5	-	-	-	-	-	0,257	-	-	0,013	-	-	-
FILLING	H2		-	-	110	-	-	5	-	-	-	-	-	0,257	-	-	0,013	-	-	-
	Н3	Zone de remplissage électrolyte occasionnelle	-	-	110	-	-	5	-	-	-	-	-	0,257	-	-	0,013	-	-	-
	I1	Dispositif de formation	-	-	-	-	1	-	-	10	-	-	-	-	-	0,057	-	-	2,844	-
ELECTRIC	12	Dispositif de classement	-	-	-	-	1	-	-	10	-	-	-	-	-	0,057	-	-	2,844	-
FORMATION ANTIFEU	13	Ventilation étapes	-	-	-	-	1	-	-	10	-	-	-	-	-	0,0002	-	-	0,012	-
AITHLU	14	Complément remplissage électrolyte	-	-	110	-	-	5	-	-	-	-	-	0,396	-	-	0,020	-	-	-

					Concentr	ation en m	ng/m³							F	lux (kg/h)					
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	cov	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	cov	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
	15	Scellement final	-	-	110	-	-	5	-	-	-	-	-	0,043	-	-	0,002	-	-	-
MODULE ASSEMBLY	J	Cartérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	40	5	110	-	-	-	-	-	-	0,004	0,001	0,100	-	-	-		-	-
CHAUDIERES VAPEUR (gaz naturel)	K1	Chaudières de Puissance max 27,5 MW Max Puissance moyenne 15,5 MW	-	-	-	-	-	-	100	100	-	-	-	-	-	-	-	4,305	4,305	-
CHAUDIERES EAU CHAUDE (gaz naturel)	K2	Chaudières de Puissance 5,8 MW	-	-	-	-	-	-	100	100	-	-	-	-	-	-	-	0,704	0,704	-
	·	·	To	tal site ACC :	·		·					1,401	0,176	1,309	0,518	0,114	0,173	5,009	10,709	0,020

Flux maximaux journaliers et annuels des différents points de rejets atmosphériques du site ACC en situation autorisée

						Flux kg	/j								Flux (t/ar	1)				
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
	A1	Scaling station	6,480	0,810	-	-	-	2,700	-	-	-	2,132	0,266	-	-	1	0,888	-	-	-
	A2	Mélanges	1,417	0,177	-	0,472	-	-	-	-	-	0,466	0,058	-	0,155	-	-	-	-	-
	A3	Captation ambiant	0,907	0,113	-	-	-	-	-	-	-	0,298	0,037	-	-	-	-	-	-	-
MIXING	A4	Oxydateur	-	-	-	2,935	-	-	-	-	-	-	-	-	0,966	-	-	-	-	-
MIXING	B1	Scaling station	8,640	1,080	-	-	-	-	-	-	-	2,843	0,355	-	-	-	-	-	-	-
	B2	Mélanges	0,691	0,086	-	-	-	-	-	-	-	0,227	0,028	-	-	-	-	-	-	- '
	В3	Captation ambiant	1,037	0,130	-	-	-	-	-	-	-	0,341	0,043	-	-	-	-	-	-	-
	B4	Installations de nettoyage	-	-	-	0,168	-	-	-	-	-	-	-	-	0,055	-	-	-	-	
	C1	Extraction vapeur avant passage dans le four (cathode)	-	-	-	0,691	-	-	-	-	-	-	-	-	0,227	-	-	-	-	-
	C2	Traitement Ozone (cathode)	-	-	-	-	-	-	-	-	0,240	-	-	-	-	-	-	-	-	0,079
COATING	C4	Vapeurs solvantées du condenseur (récupération solvant 1)	-	-	-	2,400	-	-	-	-	-	-	-	-	0,790	-	-	-	-	-
	C6	Traitement Ozone	-	-	-	-	-	-	-	-	0,240	-	-	-	-	-	-	-	-	0,079
	С9	Evacuation général de l'enduction	-	-	-	5,760	-	-	-	-	-	-	-	-	1,895	-	-	-	-	-
CALENDERING	D1	Nettoyage de la bande de calendrage (cathode)	0,835	0,104	-	-	-	-	-	-	-	0,275	0,034	-	-	-	-	-	-	-
CALENDERING	D2	Nettoyage de la bande de calendrage (anode)	0,835	0,104	-	-	-	-	-	-	-	0,275	0,034	-	-	-	-	-	-	-
	E1	Vide air - séchage du séparateur	0,104	0,013	-	-	-	-	-	-	-	0,034	0,004	-	-	-	-	-	-	-
STAKING	E2	Extraction de l'empilement (zone anode et cathode)	4,800	0,600	-	-	-	-	-	-	-	1,579	0,197	-	-	-	-	-	-	-
	E3	Extraction de l'empilement (zone anode et cathode)	4,800	0,600	-	-	-	-	-	-	-	1,579	0,197	-	-	-	-	-	-	-
	F1	Découpe laser + poussières (cathode)	1,210	0,151	-	-	-	-	-	-	-	0,398	0,050	-	-	-	-	-	-	-
NOTCHING	F2	Découpe laser + poussières (anode)	1,210	0,151	-	-	-	-	-	-	-	0,398	0,050	-	-	-	-	-	-	-
	G1	Zone d'assemblage des	0,218	0,027	-	-	-	-	-	-	-	0,072	0,009	-	-	-	-	-	-	-
CELL ASSEMBLY	G2	cellules : soudage laser,	0,218	0,027	-	-	-	-	-	-	-	0,072	0,009	-	-		-	-	-	-
ASSEMBLI	G3	scellage	0,218	0,027	-	-	-	-	-	-	-	0,072	0,009	-	-	-	-	-	-	-
	H1	Zone de remplissage	-	-	6,161	-	-	0,308	-	-	-	-	-	2,027	-	-	0,101	-	-	-
FILLING	H2	électrolyte	-	-	6,161	-	-	0,308	-	-	-	-	-	2,027	-	-	0,101	-	-	-
TILLING	Н3	Zone de remplissage électrolyte occasionnelle	-	-	6,161	-	-	0,308	-	-	-	-	-	2,027	-	-	0,101	-	-	-
	I1	Dispositif de formation	-	-	-	-	1,365	-	-	68,256	-	-	-	-	-	0,449	-	-	22,456	-
ELECTRIC	12	Dispositif de classement	-	-	-	-	1,365	-	-	68,256	-	-	-	-	-	0,449	-	-	22,456	-
FORMATION	13	Ventilation étapes	-	-	-	-	0,006	-	-	0,288	-	-	-	-	-	0,002	-	-	0,095	-
ANTIFEU	14	Complément remplissage électrolyte	-	-	9,494	-	-	0,475	-	-	-	-	-	3,124	-	1	0,156	-	-	-

						Flux kg	/j								Flux (t/ar	1)				
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
	15	Scellement final	-	-	1,037	-	-	0,052	-	-	-	-	-	0,341	-	-	0,017	-	-	-
MODULE ASSEMBLY	J	Cartérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	0,096	0,012	2,400	-	-	-	-	-	-	0,032	0,004	0,790	-	-	-	-	-	-
CHAUDIERES VAPEUR (gaz naturel)	K1	Chaudières de Puissance max 27,5 MW Max Puissance moyenne 15,5 MW	-	-	-	-	-	-	103,320	103,320	-	-	-	-	-	-	-	36,265	36,265	-
CHAUDIERES EAU CHAUDE (gaz naturel)	K2	Chaudières de Puissance 5,8 MW	-	-	-	-	-	-	16,902	16,902	-	-	-	-	-	•	-	5,933	5,933	-
	TOTA	AL site ACC:	33,716	4,214	31,414	12,426	2,736	4,151	120,222	257,022	0,480	11,092	1,387	10,335	4,088	0,900	1,366	42,198	87,205	0,158

En ce qui concerne les métaux, l'article 27-8 de l'arrêté du 02 Février 1998 modifié indique que si le flux horaire d'antimoine, de chrome, de cobalt, de cuivre, d'étain, de manganèse, de nickel, de vanadium et de zinc et leurs composés dépasse 25 g/h, la valeur limite de concentration est de 5 mg/m³. Le flux horaire global du site en métaux avec les % d'abattements considérés est estimé à 0,1756 kg/h.

Du fait de la nature des matériaux mis en œuvre dans le process, il sera considéré avec cette famille de métaux, l'aluminium et le Lithium.

Pour le calcul de risque sanitaire, le flux global avait été réparti, sans pouvoir se cumuler, de la façon suivante :

Métaux	Concentration (mg/m³)	% du Flux total	Flux considéré pour l'ERS (kg/h)	Flux considéré pour l'ERS (kg/j)	Flux considéré pour l'ERS (t/an)
Sb		10	0,0176	0,421	0,139
Cr		10	0,0176	0,421	0,139
Со		100	0,1756	4,214	1,387
Cu		100	0,1756	4,214	1,387
Sn		10	0,0176	0,421	0,139
Mn	5	100	0,1756	4,214	1,387
Ni		100	0,1756	4,214	1,387
٧		10	0,0176	0,421	0,139
Zn		10	0,0176	0,421	0,139
Al		100	0,1756	4,214	1,387
Li		100	0.1756	4.214	1.387

Tableau 182. Flux global pour les métaux en situation autorisée (bilan majorant)

En effet, pour le calcul de risques sanitaires, en l'absence de mesures de répartition réelle par métal, le flux annuel global retenu pour tous les métaux (9 métaux + Al + Li) est de 1,387 t/an, avec, de façon majorante, la possibilité que ce flux contienne soit 100 % d'un des principaux métaux entrant dans les composants du process (Co, Cu, Mn, Ni, Al ou encore Li), ou 10 % pour les autres métaux qui n'entrent pas dans les matières premières (Sb, Cr, Sn, V ou Zn).

VI.3.3.1.2 BILAN REALISTE

Le bilan moyen doit être basé sur des prévisions d'émission les plus réalistes.

C'est pourquoi, en l'absence de mesures réelles, sur la base de certains retours d'expérience de la ligne pilote et de l'efficacité des systèmes de traitement envisagé, il avait été conservé pour le bilan moyen les pourcentages d'abattement évoqués dans le bilan maximal pour l'estimation des flux moyens et des concentrations réduites de moitié, à l'exception pour le bilan lié au COV issus du solvant 1.

En l'absence de retour d'expérience, la valeur moyenne de concentration des COV issus du solvant 1 a été diminuée à 1,5 mg/m³.

Les tableaux ci-après présentent les valeurs de concentration et de flux en polluants considérés en situation autorisée pour le bilan réaliste.

Concentrations moyennes et flux horaires moyens des différents rejets atmosphériques canalisés du site ACC en situation autorisée

					Concentra	ation en m	ıg/m³							F	lux (kg/h)					
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	COVNM	COV issus du solvant	COV annexe IVd	HF	NOx	со	O ₃
	A1	Station de dosage (cathode)	20	2,5	-	-	-	2,5	-		-	0,135	0,017	-	-	-	0,056	-	-	-
	A2	Mélanges (cathode)	20	2,5	1	1,5	-	1	ı	ı	1	0,030	0,004	-	0,015	-	1	-	-	-
	A3	Captation ambiant (cathode)	20	2,5	-	-	-	-	-	-	-	0,019	0,002	-	-	-	-	-	-	-
	A4	Laveur de gaz (cathode)	-	-	-	1,5	-	-	-	-	-	-	-	-	0,092	-	-	-	-	-
MIXING	B1	Station de dosage (anode)	20	2,5	-	-	-	-	-	-	-	0,180	0,023	-	-	-	-	-	-	-
	B2	Mélanges (anode)	20	2,5	-	-	-	-	-	-	-	0,014	0,002	-	-	-	-	-	-	-
	В3	Captation ambiant (anode)	20	2,5	-	-	-	-	-	-	-	0,022	0,003	-	-	-	-	-	-	
	B4	Installations de nettoyage (anode et cathode)	-	-	-	1,5	-	-	-	-	-	-	-	-	0,005	-	-	-	-	-
	C1	Extraction vapeur avant passage dans le four (cathode)	-	-	-	1,5	-	-	-	-	-	-	-	-	0,022	-	-	-	-	-
	C2	Traitement Ozone (cathode)	-	-	-	-	ı	1	ı	ı	5	-	-	-	-	-	-	-	-	0,005
COATING	C4	Vapeurs solvantées du condenseur (récupération 1)	-	-	1	1,5	-	-	1	-	-	-	-	-	0,075	-	-	-	-	-
	C6	Traitement Ozone	-	-	-	-	-	-	-	-	5	-	-	-	-	-	-	-	-	0,005
	С9	Evacuation général de l'enduction	-	-	-	1,5	-	-	-	-	-	-	-	-	0,180	-	-	-	-	-
CAL ENDERNIS	D1	Nettoyage de la bande de calendrage (cathode)	20	2,5	-	-	-	-	-	-	-	0,017	0,002	-	-	-	-	-	-	-
CALENDERING	D2	Nettoyage de la bande de calendrage (anode)	20	2,5	-	-	-	-	-	-	-	0,017	0,002	-	-	-	-	-	-	-
	E1	Vide air - séchage du séparateur	20	2,5	-	-	-	-	-	-	-	0,002	0,0003	-	-	-	-	-	-	-
STACKING	E2	Extraction de l'empilement (zone anode et cathode)	20	2,5	-	-	-	-	-	-	-	0,100	0,013	-	-	-	-	-	-	-
	E3	Extraction de l'empilement (zone anode et cathode)	20	2,5	-	-	-	-		-	-	0,100	0,013	-	-	-	-	-	-	-
NOTELINIE	F1	Découpe laser + poussières (cathode)	20	2,5	-	-	-	-	-	-	-	0,025	0,003	-	-	-	-	-	-	-
NOTCHING	F2	Découpe laser + poussières (anode)	20	2,5	-	-	-	-	-	-	-	0,025	0,003	-	-	-	-	-	-	-
	G1		20	2,5	-	-	-	-	-	-	-	0,005	0,0006	-	-	-	-	-	-	-
CELL ASSEMBLY	G2	Zone d'assemblage des cellules : soudage laser, scellage	20	2,5	-	-	-	-	-	-	-	0,005	0,0006	-	-	-	-	-	-	-
ASSEMBET	G3	soudage taser, seettage	20	2,5	-	-	-	-	-	-	-	0,005	0,0006	-	-	-	-	-	-	-
	H1	Zone de remplissage électrolyte	-	-	55	-	•	2,5	-	•	•	-	-	0,128	-	-	0,006	-	-	-
FILLING	H2	Zone de remptissage electrotyte	-	-	55	-	•	2,5	-	•	•	-	-	0,128	-	-	0,006	-	-	-
TILLING	Н3	Zone de remplissage électrolyte occasionnelle	-	-	55	-	-	2,5	-	-	-	-	-	0,128	-	-	0,006	-	-	-
	I1	Dispositif de formation	-	-	-	-	0,5	-	-	5	-	-	-	-	-	0,028	-	-	1,422	-
	12	Dispositif de classement	-	-	-	-	0,5	-	-	5	-	-	-	-	-	0,028	-	-	1,422	-
ELECTRIC FORMATION	13	Ventilation étapes	-	-	-	-	0,5	ı	1	5	1	-	-	-	-	0,0001	-	-	0,006	
ANTIFEU	14	Complément remplissage électrolyte	-	-	55	-	-	2,5	-	-	-	-	-	0,198	-	-	0,010	-	-	-
	15	Scellement final	-	-	55	-	-	2,5	-	-	-	-	-	0,022	-	-	0,001	-	-	-

					Concentra	ation en m	g/m³							F	lux (kg/h)					
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	СО	O ₃	Poussières	(Sb+Cr+Co+Cu+Sn+ Mn+Ni+V+Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
MODULE ASSEMBLY	J	Cartérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	20	2,5	55	-	-	-	-	-	-	0,002	0,0003	0,050	-	-	-	-	-	-
CHAUDIERES VAPEUR (gaz naturel)	K1	Chaudières de Puissance max 27,5 MW Max Puissance moyenne 15,5 MW	-	-	-	-	-	-	50	50	-	-	-	-	-	-	-	2,153	2,153	-
CHAUDIERES EAU CHAUDE (gaz naturel)	K2	Chaudières de Puissance 5,8 MW	-	-	-	-	-	-	50	50	-	-	-	-	-	-	-	0,352	0,352	-
	•		То	tal site ACC :		•			•		•	0,702	0,0878	0,654	0,3883	0,057	0,086	2,505	5,355	0,010

						Flux k	g/i								Flux (t/a	an)				
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
	A1	Scaling station	3,240	0,405	-	-	-	1,350	-	-	-	1,066	0,133	-	-	-	0,444	-	-	-
	A2	Mélanges	0,708	0,089	-	0,354	-	-	-	-	-	0,233	0,029	-	0,117	-	-	-	-	-
	A3	Captation ambiant	0,454	0,057	-	-	-	-	-	-	-	0,149	0,019	-	-	-	-	-	-	-
MIXING	A4	Oxydateur	-	-	-	2,201	-	-	-	-	-	-	-	-	0,724	-	-	-	-	-
Mixin	B1	Scaling station	4,320	0,540	-	-	-	-	-	-	-	1,421	0,178	-	-	-	-	-	-	-
	B2	Mélanges	0,346	0,043	-	-	-	-	-	-	-	0,114	0,014	-	-	-	-	-	-	-
	В3	Captation ambiant	0,518	0,065	-	-	-	-	-	-	-	0,171	0,021	-	-	-	-	-	-	-
	B4	Installations de nettoyage	-	-	-	0,126	-	-	-	-	-	-	-	-	0,041	-	-	-	-	-
	C1	Extraction vapeur avant passage dans le four (cathode)	-	-	-	0,518	-	-	-	-	-	-	-	-	0,171	-	-	-	-	-
	C2	Traitement Ozone (cathode)	-	-	-	-	-	-	-	-	0,120	-	-	-	-	-	-	-	-	0,039
COATING	C4	Vapeurs solvantées du condenseur (récupération solvant 1)	-	-	-	1,800	-	-	-	-	-	-	-	-	0,592	-	-	-	-	-
	C6	Traitement Ozone	-	-	-	-	-	-	-	-	0,120	-	-	-	-	-	-	-	-	0,039
	С9	Evacuation général de l'enduction	-	-	-	4,320	-	-	-	-	-	-	-	-	1,421	-	-	-	-	-
CAL ENDERING	D1	Nettoyage de la bande de calendrage (cathode)	0,418	0,052	-	-	-	-	-	-	-	0,137	0,017	-	-	-	-	-	-	-
CALENDERING	D2	Nettoyage de la bande de calendrage (anode)	0,418	0,052	-	-	-	-	-	-	-	0,137	0,017	-	-	-	-	-	-	-
	E1	Vide air - séchage du séparateur	0,104	0,013	-	-	-	-	-	-	-	0,017	0,002	-	-	-	-	-	-	-
STAKING	E2	Extraction de l'empilement (zone anode et cathode)	2,400	0,300	-	-	-	-	-	-	-	0,790	0,099	-	-	-	-	-	-	-
	E3	Extraction de l'empilement (zone anode et cathode)	2,400	0,300	-	-	-	-	-	-	-	0,790	0,099	-	-	-	-	-	-	-
	F1	Découpe laser + poussières (cathode)	0,605	0,076	-	-	-	-	-	-	-	0,199	0,025	-	-	-	-	-	-	-
NOTCHING	F2	Découpe laser + poussières (anode)	0,605	0,076	-	-	-	-	-	-	-	0,199	0,025	-	-	-	-	-	-	-
	G1		0,109	0,014	-	-	-	-	-	-	-	0,036	0,004	-	-	-	-	-	-	-
CELL ASSEMBLY	G2	Zone d'assemblage des cellules : soudage laser, scellage	0,109	0,014	-	-	-	-	-	-	-	0,036	0,004	-	-	-	-	-	-	-
ASSEMBET	G3	soudage laser, scellage	0,109	0,014	-	-	-	-	-	-	-	0,036	0,004	-	-	-	-	-	-	-
	H1	7 de nomelless (1+) -	-	-	3,080	-	-	0,154	-	-	-	-	-	1,013	-	-	0,051	-	-	-
FILLING	H2	Zone de remplissage électrolyte	-	-	3,080	-	-	0,154	-	-	-	-	-	1,013	-	-	0,051	-	-	- 1
I ILLING	Н3	Zone de remplissage électrolyte occasionnelle	-	-	3,080	-	-	0,154	-	-	-	-	-	1,013	-	-	0,051	-	-	-
	I1	Dispositif de formation	-	-	-	-	0,683	-	-	34,128	-	-	-	-	-	0,225	-	-	11,228	-
	12	Dispositif de classement	-	-	-	-	0,683	-	-	34,128	-	-	-	-	-	0,225	-	-	11,228	-
ELECTRIC FORMATION	13	Ventilation étapes	-	-	-	-	0,003	-	-	0,144	-	-	-	-	-	0,001	-	-	0,047	- 1
ANTIFEU	14	Complément remplissage électrolyte	-	-	4,747	-	-	0,237	-	-	-	-	-	1,562	-	-	0,078	-	-	-
	15	Scellement final	-	-	0,518	-	-	0,026	-	-	-	-	-	0,171	-	-	0,009	-	-	-

						Flux k	g/j								Flux (t/	an)				
Zone	N°de rejet	Equipement	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	03	Poussières	(Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn+Al+Li)	COVNM	COV issus du solvant 1	COV annexe IVd	HF	NOx	со	O ₃
MODULE ASSEMBLY	J	Cartérisation de l'ensemble, soudage laser des modules et insertion des busbars (colle)	0,048	0,006	1,200	-	-	-	-	-	-	0,016	0,002	0,395	-	-	-	-	-	-
CHAUDIERES VAPEUR (gaz naturel)	K1	Chaudières de Puissance max 27,5 MW Max Puissance moyenne 15,5 MW	-	-	-	-	-	-	51,660	51,660	-	-	-	-	-	-	-	18,133	18,133	-
CHAUDIERES EAU CHAUDE (gaz naturel)	K2	Chaudières de Puissance 5,8 MW	-	-	-	-	-	-	8,451	5,451	-	-	-	-	-	-	-	2,966	2,966	-
	TOT	AL site ACC:	16,858	2,107	15,707	9,320	1,368	2,075	60,111	128,511	0,240	5,546	0,693	5,168	3,066	0,450	0,683	21,099	43,603	0,079

En ce qui concerne les métaux, la répartition des flux de chaque métal retenu est variable en fonction de la nature des matériaux utilisés dans le process. Il a été pris en compte pour la hiérarchisation des risques de la famille de métaux visée par l'arrêté du 02 février 1998 modifié, de l'aluminium et du Lithium, sans être cumulable, les valeurs suivantes :

Tableau 185. Répartition des flux pour les métaux en situation autorisée (bilan moyen)

Métaux	Concentration (mg/m³)	% du Flux total	Flux moyens (kg/h)	Flux moyens (kg/j)	Flux moyens (t/an)						
Sb		10	0,0088	0,211	0,069						
Cr		10	0,0088	0,211	0,069						
Со	2,5	100	0,0878	0,0878 2,107							
Cu		100	0,0878	0,0878 2,107							
Sn		10	0,0088	0,211	0,069						
Mn		100	0,0878	2,107	0,693						
Ni		100	0,0878	2,107	0,693						
V		10	0,0088	0,211	0,069						
Zn		10	0,0088	0,211	0,069						
Al		100	0,0878	2,107	0,693						
Li		100	0,0878	2,107	0,693						

Le flux moyen annuel pour la somme des métaux (9 métaux + Al + Li) a été estimé à 0,693 t/an.

VI.3.3.2 SITUATION MODIFIEE

VI.3.3.2.1 BILAN MAJORANT

Le bilan majorant a été mis à jour suite aux ajustements effectués sur les points de rejets de BBD1. Le bilan présenté ci-dessous est envisagé dans le cadre de l'exploitation de BBD1 et de BBD2.

Rejets atmosphériques canalisés

Les tableaux ci-après présente les valeurs de concentration et de flux en polluants considérés dans cette étude.

Les valeurs de concentration considérées sont issues :

- des valeurs retenues en situation autorisée comme présentée ci-avant et repris dans l'annexe 1 de l'arrêté préfectoral du 27 décembre 2021 qui était principalement issues de l'arrêté du 02 Février 1998⁵.
- des conclusions sur les NEA-MTD pour les installations de combustion suite au classement du site à la rubrique 3110. Les VLE pour le point de rejet lié à la chaudière au gaz naturel (puissance > 15 MW) sont plus faible : 85 mg/m³ pour les NOx et 15 mg/m³ pour le CO.

Les hypothèses prises en compte en situation autorisée seront similaires en situation modifiée (pourcentages d'abattement, temps de fonctionnement...) en dehors de la répartition des métaux qui a été revue pour s'ajuster à la réalité des activités sur site.

La note de calcul de hauteurs de cheminée est disponible en annexe 12.

⁵ L'arrêté du 03/02/22 relatif aux meilleures techniques disponibles (MTD) applicables à certaines installations classées du secteur du traitement de surface à l'aide de solvants organiques relevant du régime de l'autorisation au titre des rubriques 3670 ou 3710 (pour lesquelles la charge polluante principale provient d'une ou plusieurs installations relevant de la rubrique 3670) de la nomenclature des ICPE et l'arrêté du 28/02/22 modifiant l'arrêté du 2 février 1998 relatif aux prélèvements et à la consommation d'eau ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à des autorisation n'imposent pas de nouvelles valeurs limites plus faibles que celles qui sont déjà imposés au site ACC.

Caractéristiques des différents points de rejets atmosphériques retenues pour le site ACC en situation modifiée

Zone	N° de rejet	Equipement	Coordonnées Lambert 93 (m)	Débit moyen (Nm3/h)	Débit max. (Nm3/h)	Vitesse d'éjection minimale (m/s)	Hauteur de cheminée minimale (m)	Hauteur de cheminée retenue (m)	Diamètre (mm)	Température (°C)	Temps de fonctionnement en h/an	Abattement considéré pour l'estimation des flux	
	A1	Station de dosage (cathode + anode) Mélanges (anode) mixing	688937.34 7046616.658	20 000	20 000	8	38	38	630	50	7 896	Abattement de 85 % sur les flux de poussières et métaux Abattement de 50 % sur le	
MIXING COATING CALENDERING	A2	Mélanges (cathode) Installations de nettoyage (anode et cathode)	688940.456 7046617.208	24 000	24 000	8	38	38	630	30 50 7 896		flux de fluorure d'hydrogène	
	C1	Traitement Ozone (cathode)	689049.521 7046660.714	6000	6000	8	24,6	24,6	250	22	7 896		
	C2	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	689103.745 7046592.094	40 000	40 000	8	21,95	21,95	1800	60	7 896	/	
NOTCHING	F1	Découpe laser + poussières (cathode)	689127.367 7046683.365	27000	27000	8	21,95	21,95	630	22	7 896	Abattement de 95 % sur les flux de poussières et	
110 10111110	F2	Découpe laser + poussières (anode)	689134.23 7046684.933	27000	27000	8	21,95	21,95	630	22	7 896	métaux	
CELL ASSEMBLY (+ BAKING)	G1	Zone d'assemblage des cellules : soudage laser, scellage	689136.843 7046651.024	30 000	30 000	8	21,95	21,95	800	22	7 896	Abattement de 95 % sur les flux de poussières et métaux	
1st FILLING	H1	Zone de remplissage électrolyte	689324.045 7046717.077	32 000	32 000	8	21,95	21,95	800	22	7 896		
2nd FILLING	H2	Remplissage	689420.006 7046735.903	17 000	17 000	8	20,4	20,4	560	22	7 896	Abattement de 50 % sur le flux de fluorure	
	15		689399.959 7046705.964	65 000	65 000	8	20,4	20,4	1 000	22	7 896	d'hydrogène Abattement de 55 % sur le	
ELECTRIC	16		689366.698 7046698.923	27 000	27 000	8	20,4	20,4	630	22	7 896	flux de COVNM Abattement de 80 % sur le	
FORMATION ANTIFEU	17	1ère charge	689398.003 7046718.486	45 000	45 000	8	20,4	20,4	800	22	7 896	flux de COV annexe Ivd	
	18		689375.698 7046714.964	27 000	27 000	8	20,4	20,4	630	22	7 896		
	J1		689503.375 7046721.285	5 000	5 000	5	20,40	20,4	315	22	7 896		
MODULE	J2	Caractérisation de l'ensemble, soudage laser	689514.19 7046723.727		5 000	5	19,92	20,4	315	22	7 896	Abattement de 95 % sur les	
ASSEMBLY	J3	des modules et insertion des busbars (colle)	689527.316 7046726.22	_	5 000	5	14,94	20,4	315	22	7 896	flux de poussières et	
	J4		689539.088 7046728.296		5 000	5	14,85	20,4	315	22	7 896	métaux	
CHAUFFERIE	J5 K (K1 + K2)	Chaudières de puissance max de 22,3 MW	689553.049 7046731.115 688899.77 7046680.915		5 000 43050	8	14,85 38	38	315 400	22 85	7 896 8 424	/	

Zone	N° de rejet	Equipement	Coordonnées Lambert 93 (m)	Débit moyen (Nm3/h)	Débit max. (Nm3/h)	Vitesse d'éjection minimale (m/s)	Hauteur de cheminée minimale (m)	Hauteur de cheminée retenue (m)	Diamètre (mm)	Température (°C)	Temps de fonctionnement en h/an	Abattement considéré pour l'estimation des flux
	А3	Station de dosage (cathode + anode) Mélanges (anode) mixing	688961.327 7046719.882	20 000	20 000	8	38	38	630	50	7 896	Abattement de 85 % sur les flux de poussières et métaux Abattement de 50 % sur le
MIXING COATING	A4	Mélanges (cathode) Installations de nettoyage (anode et cathode)	688963.955 7046720.258	24 000	24 000	8	38	38	630	50	7 896	flux de fluorure d'hydrogène
CALENDERING	C5	Traitement Ozone (cathode)	689083.46 7046714.156	6000	6000	8	24,6	24,6	250	22	7 896	
	C6	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	689110.966 7046798.551	40 000	40 000	8	21,95	21,95	1800	60	7 896	/
NOTCHING	F3	Découpe laser + poussières (cathode)	689171.891 7046718.239	27000	27000	8	21,95	21,95	630	22	7 896	Abattement de 95 % sur les flux de poussières et
NOTCHING	F4	Découpe laser + poussières (anode)	689175.834 7046718.521	27000	27000	8	21,95	21,95	630	22	7 896	métaux
CELL ASSEMBLY (+ BAKING)	G2	Zone d'assemblage des cellules : soudage laser, scellage	689166.582 7046760.904	30 000	30 000	8	21,95	21,95	800	22	7 896	Abattement de 95 % sur les flux de poussières et métaux
1st FILLING	H3	Zone de remplissage électrolyte	689359.107 7046764.661	32 000	32 000	8	21,95	21,95	800	22	7 896	
2nd FILLING	H4	Remplissage	689453.427 7046782.779	17 000	17 000	8	20,4	20,4	560	22	7 896	Abattement de 50 % sur le flux de fluorure
ELECTRIC	l13		689424.808 7046804.965	65 000	65 000	8	20,4	20,4	1 000	22	7 896	d'hydrogène Abattement de 55 % sur le flux de COVNM
FORMATION	l14	1ère charge	689390.341 7046798.005	27 000	27 000	8	20,4	20,4	630	22	7 896	Abattement de 80 % sur le
ANTIFEU	l15		689427.155 7046794.987	45 000	45 000	8	20,4	20,4	800	22	7 896	flux de COV annexe Ivd
	l16		689405.151 7046788.517	27 000	27 000	8	20,4	20,4	630	22	7 896	
	J6		689526.744 7046829.624	5 000	5 000	5	20,40	20,4	315	22	7 896	_
MODULE	J7	Caractérisation de l'ensemble, soudage laser	689536.601 7046831.595	5 000	5 000	5	19,92	20,4	315	22	7 896	Abattement de 95 % sur les
ASSEMBLY	J8	des modules et insertion des busbars (colle)	689552.091 7046834.693	5 000	5 000	5	14,94	20,4	315	22	7 896	flux de poussières et
	J9	, , ,	689563.638 7046837.228	5 000	5 000	5	14,85	20,4	315	22	7 896	métaux
	J10		689576.029 7046839.481	5 000	5 000	5	14,85	20,4	315	22	7 896	

Concentrations et flux horaires maximaux des rejets atmosphériques retenus en situation future

Caractéristiques								Concentra	ation (n	ng/m³)								Flux horair	re (kg/h)											
Bloc	Parties	N° Point KALIES	Equipements	Débit max (Nm³/h)	Hauteur de cheminée retenue (m)	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3	Poussières	(Sb+Cr+Co +Cu+Sn+Mn +Ni+V+Zn +Al+Li)	COV issus du solvan t 1	cov	COV Annexe IVd	HF	NOx	со	О3							
	MIXING COATING CALENDERING	A1	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	38	40	5				5				0,120	0,015	0	0	0	0,050	0	0	0							
		A2	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	38	40	5	2							0,144	0,018	0,048	0	0	0	0	0	0							
		C1	Traitement Ozone (cathode)	6000	24,6									10	0	0	0	0	0	0	0	0	0,060							
		C2	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40000	21,95			2							0	0	0,080	0	0	0	0	0	0							
	NOTCHING	F1	Découpe laser + poussières (cathode)	27000	21,95	40	5								0,054	0,007	0	0	0	0	0	0	0							
		F2	Découpe laser + poussières (anode)	27000	21,95	40	5								0,054	0,007	0	0	0	0	0	0	0							
BBD1	CELL ASSEMBLY (+ BAKING)	G1	Zone d'assemblage des cellules : soudage laser, scellage	30 000	21,95	40	5								0,060	0,008	0	0	0	0	0	0	0							
	1st FILLING	H1	Zone de remplissage électrolyte	32 000	21,95				110		5				0	0	0	1,584	0	0,080	0	0	0							
	2nd FILLING	H2	Remplissage	17 000	20,4				110	1	5		10	10	0	0	0	0,842	0,003	0,043	0	0,170	0,170							
		15		65 000	20,4				110	1	5		10	10	0	0	0	3,218	0,013	0,163	0	0,650	0,650							
	ELECTRIC	16	1 à un alla una	27 000	20,4				110	1	5		10	10	0	0	0	1,337	0,005	0,068	0	0,270	0,270							
	FORMARTION	17	1ère charge	45 000	20,4				110	1	5		10	10	0	0	0	2,228	0,009	0,113	0	0,450	0,450							
		18		27 000	20,4				110	1	5		10	10	0	0	0	1,337	0,005	0,068	0	0,270	0,270							
		J1		5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0							
		J2	Caractérisation de l'ensemble, soudage	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0							
	MODULE ASSEMBLY	J3	laser des modules et	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0							
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J4	insertion des busbars (colle)	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0							
		J5	(conc)	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0							
	CHAUDIERES VAPEUR (gaz naturel)	K (K1 +K2)	Chaudières de puissance max de 22,3 MW	43050	38							85	15		0	0	0	0	0	0	3,659	0,646	0							

Caractéristiques							(Concentra	ation (n	ng/m³)								Flux horair	e (kg/h)				
Bloc	Parties	N° Point KALIES	Equipements	Débit max (Nm³/h)	Hauteur de cheminée retenue (m)	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	COV	COV Annexe IVd	HF	NOx	со	О3	Poussières	(Sb+Cr+Co +Cu+Sn+Mn +Ni+V+Zn +Al+Li)	COV issus du solvan t 1	COV	COV Annexe IVd	HF	NOx	со	03
		А3	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	38	40	5				5				0,120	0,015	0	0	0	0,050	0	0	0
	MIXING COATING CALENDERING	Α4	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	38	40	5	2							0,144	0,018	0,048	0	0	0	0	0	0
		C5	Traitement Ozone (cathode)	6000	24,6									10	0	0	0	0	0	0	0	0	0,060
		C6	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40000	21,95			2							0	0	0,080	0	0	0	0	0	0
	NOTSUNIS	F3	Découpe laser + poussières (cathode)	27000	21,95	40	5								0,054	0,007	0	0	0	0	0	0	0
BBD2	NOTCHING -	F4	Découpe laser + poussières (anode)	27000	21,95	40	5								0,054	0,007	0	0	0	0	0	0	0
	CELL ASSEMBLY (+ BAKING)	G2	Zone d'assemblage des cellules : soudage laser, scellage	30 000	21,95	40	5								0,060	0,008	0	0	0	0	0	0	0
	1st FILLING	Н3	Zone de remplissage électrolyte	32 000	21,95				110		5				0	0	0	1,584	0	0,080	0	0	0
	2nd FILLING	H4	Remplissage	17 000	20,4				110	1	5		10	10	0	0	0	0,842	0,003	0,043	0	0,170	0,170
		l13		65 000	20,4				110	1	5		10	10	0	0	0	3,218	0,013	0,163	0	0,650	0,650
	ELECTRIC FORMATION	l14	1ère charge	27 000	20,4				110	1	5		10	10	0	0	0	1,337	0,005	0,068	0	0,270	0,270
	ANTIFEU	l15	iere charge	45 000	20,4				110	1	5		10	10	0	0	0	2,228	0,009	0,113	0	0,450	0,450
		l16		27 000	20,4				110	1	5		10	10	0	0	0	1,337	0,005	0,068	0	0,270	0,270
		J6	Caractérisation de	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0
	MODILLE	J7	l'ensemble, soudage	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0
	MODULE ASSEMBLY	J8	laser des modules et insertion des busbars	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0
		J9	(colle)	5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0
		J10		5 000	20,4	40	5		20						0,010	0,001	0	0,100	0	0	0	0	0
	TOTAL											0,964	0,121	0,256	22,087	0,072	1,165	3,659	4,266	3,740			

									Flux annu	el (t/an)								Flux journ	nalier (kg/	j)			
	Parties	N° Point KALIES	Equipements	Débit max (Nm3/h)	Hauteur de cheminée (m)	Poussières	(Sb+Cr+Co +Cu+Sn+ Mn+Ni+V+ Zn+Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3	Poussières	(Sb+Cr+Co +Cu+Sn+Mn+ Ni+V+ Zn+Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3
		A1	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	38	0,95	0,12	0	0	0	0,39	0	0	0	2,88	0,360	0	0	0	1,200	0	0	0
	MIXING COATING CALENDERING	A2	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	38	1,14	0,14	0,38	0	0	0	0	0	0	3,46	0,432	1,152	0	0	0	0	0	0
		C1	Traitement Ozone (cathode)	6000	24,6	0	0	0	0	0	0	0	0	0,47	0	0	0	0	0	0	0	0	1,440
		C2	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40000	21,95	0	0	0,63	0	0	0	0	0	0	0	0	1,920	0	0	0	0	0	0
	NOTCHING	F1	Découpe laser + poussières (cathode)	27000	21,95	0,43	0,05	0	0	0	0	0	0	0	1,30	0,162	0	0	0	0	0	0	0
	NOTCHING	F2	Découpe laser + poussières (anode)	27000	21,95	0,43	0,05	0	0	0	0	0	0	0	1,30	0,162	0	0	0	0	0	0	0
BBD1	CELL ASSEMBLY (+ BAKING)	G1	Zone d'assemblage des cellules : soudage laser, scellage	30 000	21,95	0,47	0,06	0	0	0	0	0	0	0	1,44	0,180	0	0	0	0	0	0	0
	1st FILLING	H1	Zone de remplissage électrolyte	32 000	21,95	0	0	0	12,51	0	0,63	0	0	0	0	0	0	38,016	0	1,920	0	0	0
	2nd FILLING	H2	Remplissage	17 000	20,4	0	0	0	6,64	0,03	0,34	0	1,34	1,34	0	0	0	20,196	0,082	1,020	0	4,080	4,080
		15		65 000	20,4	0	0	0	25,41	0,10	1,28	0	5,13	5,13	0	0	0	77,220	0,312	3,900	0	15,600	15,600
	ELECTRIC	16	1òro chargo	27 000	20,4	0	0	0	10,55	0,04	0,53	0	2,13	2,13	0	0	0	32,076	0,130	1,620	0	6,480	6,480
	FORMARTION	17	1ère charge	45 000	20,4	0	0	0	17,59	0,07	0,89	0	3,55	3,55	0	0	0	53,460	0,216	2,700	0	10,800	10,800
		18		27 000	20,4	0	0	0	10,55	0,04	0,53	0	2,13	2,13	0	0	0	32,076	0,130	1,620	0	6,480	6,480
		J1	Cartérication do	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
	MODULE	J2	Cartérisation de l'ensemble, soudage	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
	MODULE ASSEMBLY	J3	laser des modules et	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
		J4	insertion des busbars (colle)	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
		J5	(/	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
	CHAUDIERES VAPEUR (gaz naturel)	K (K1 +K2)	Chaudières de puissance max de 22,3 MW	43050	38	0	0	0	0	0	0	30,83	5,44	0	0	0	0	0	0	0	87,822	15,498	0

									Flux annu	el (t/an)								Flux journ	alier (kg/j)			
	Parties	N° Point KALIES	Equipements	Débit max (Nm3/h)	Hauteur de cheminée (m)	Poussières	(Sb+Cr+Co +Cu+Sn+ Mn+Ni+V+ Zn+Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	03	Poussières	(Sb+Cr+Co +Cu+Sn+Mn+ Ni+V+ Zn+Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	03
		А3	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	38	0,95	0,12	0	0	0	0,39	0	0	0	2,88	0,360	0	0	0	1,200	0	0	0
	MIXING COATING CALENDERING	A4	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	38	1,14	0,14	0,38	0	0	0	0	0	0	3,46	0,432	1,152	0	0	0	0	0	0
		C5	Traitement Ozone (cathode)	6000	24,6	0	0	0	0	0	0	0	0	0,47	0	0	0	0	0	0	0	0	1,440
		C6	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40000	21,95	0	0	0,63	0	0	0	0	0	0	0	0	1,920	0	0	0	0	0	0
	NOTCHING	F3	Découpe laser + poussières (cathode)	27000	21,95	0,43	0,05	0	0	0	0	0	0	0	1,30	0,162	0	0	0	0	0	0	0
BBD2	NOTCHING	F4	Découpe laser + poussières (anode)	27000	21,95	0,43	0,05	0	0	0	0	0	0	0	1,30	0,162	0	0	0	0	0	0	0
	CELL ASSEMBLY (+ BAKING)	G2	Zone d'assemblage des cellules : soudage laser, scellage	30 000	21,95	0,47	0,06	0	0	0	0	0	0	0	1,44	0,180	0	0	0	0	0	0	0
	1st FILLING	НЗ	Zone de remplissage électrolyte	32 000	21,95	0	0	0	12,51	0	0,63	0	0	0	0	0	0	38,016	0	1,920	0	0	0
	2nd FILLING	H4	Remplissage	17 000	20,4	0	0	0	6,64	0,03	0,34	0	1,34	1,34	0	0	0	20,196	0,082	1,020	0	4,080	4,080
		l13		65 000	20,4	0	0	0	25,41	0,10	1,28	0	5,13	5,13	0	0	0	77,220	0,312	3,900	0	15,600	15,600
	ELECTRIC FORMATION	114	1ère charge	27 000	20,4	0	0	0	10,55	0,04	0,53	0	2,13	2,13	0	0	0	32,076	0,130	1,620	0	6,480	6,480
	ANTIFEU	l15	Tele cliaige	45 000	20,4	0	0	0	17,59	0,07	0,89	0	3,55	3,55	0	0	0	53,460	0,216	2,700	0	10,800	10,800
		I16		27 000	20,4	0	0	0	10,55	0,04	0,53	0	2,13	2,13	0	0	0	32,076	0,130	1,620	0	6,480	6,480
		J6	Caractórication de	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
	MODULE	J7	Caractérisation de l'ensemble, soudage	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
	MODULE ASSEMBLY	J8	laser des modules et	5 000	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0
		insertion des busbars (colle)	20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0		
		J10		20,4	0,08	0,01	0	0,79	0	0	0	0	0	0,24	0,030	0	2,400	0	0	0	0	0	
		Tot	al site ACC		7,612	0,951	2,021	174,399	0,572	9,199	30,826	34,023	29,531	23,136	2,892	6,144	530,088	1,738	27,960	87,822	102,378	89,760	

La répartition des métaux pour le calcul de risques sanitaires a été revu pour s'ajuster à la réalité des activités et des émissions potentielles au niveau des points de rejets.

La répartition des métaux peut être différente selon les points de rejet. En effet, certains métaux, comme le lithium et le cobalt, par exemple, proviennent principalement de l'usage de la « poudre cathode 2 » (usage de poudre, fabrication et enduction d'encre positive) et ne sont pas susceptible d'être émis dans d'autres étapes du process (découpe et assemblage de modules).

Le « poudre cathode 2 » est utilisé dans la fabrication de la cathode. Ce produit peut être rejeté au niveau des points de rejets suivants :

- A1 : Station de dosage (cathode + anode) / Mélanges (anode) mixing,
- A2 : Mélanges (cathode) / Installations de nettoyage (anode et cathode),
- F1: découpe laser + poussières (cathode),
- A3 : Station de dosage (cathode + anode) / Mélanges (anode) mixing,
- A4: Mélanges (cathode) / Installations de nettoyage (anode et cathode),
- F3 : découpe laser + poussières (cathode).

A partir de la formule brute de la « poudre cathode 2 », une répartition des éléments a été défini en fonction des masses molaires. Cette répartition est présentée sous pli confidentiel.

Ainsi, pour les rejets A1, A2, F1, A3, A4 et F3, il sera considéré que le flux global pourra se répartir sans se cumuler de la façon suivante :

Tableau 189. Flux global pour les métaux en situation modifiée - bilan majorant (Rejets A1, A2, F1, A3, A4 et F3)

Métaux	Concentration (mg/m³)	% du Flux total	Flux considéré pour l'ERS (kg/h)	Flux considéré pour l'ERS (kg/j)	Flux considéré pour l'ERS (t/an)
Sb		10	0,0080	0,1908	0,0628
Cr		10	0,0080	0,1908	0,0628
Со		20	0,0159	0,3816	0,1255
Cu		100	0,0795	1,9080	0,6277
Sn		10	0,0080	0,1908	0,0628
Mn	5	20	0,0159	0,3816	0,1255
Ni		80	0,0636	1,5264	0,5022
٧		10	0,0080	0,1908	0,0628
Zn	-	10	0,0080	0,1908	0,0628
Al		100	0,0795	1,9080	0,6277
Li		10	0,0080	0,1908	0,0628

Les autres points de rejets susceptibles d'émettre des métaux (F2, G1, J1, J2, J3, J4, J5, F4, G2, J6, J7, J8, J9 et J10) ne devraient pas contenir de manière significative du lithium ou du cobalt.

D'après les rapports de mesures réalisés dans le cadre de l'IEM du 27 novembre au 10 décembre 2020, la plus forte concentration en lithium mesuré est inférieur à 1,43 ng/m³ le 27/11/2020 au niveau de la zone 5 (cf. VI.5. Evaluation de l'état des milieux) et la plus forte concentration en cobalt est de 0,71 ng/m³ le 27/11/2020 et le 01/12/2020 au niveau de la zone 3. A noter que durant la période de mesures, plusieurs épisodes de pic de pollution généralisé (PM₁₀, PM_{2,5}) ont été mesurés. L'un d'eux

a amené à considérer une alerte persistante du 26 Novembre au 28 Novembre 2020 par la station ATMO Haut-de-France. Le retour aux valeurs normales n'a été observé qu'au 1^{er} Décembre 2020.

Par précaution, il sera considéré dans la suite de l'étude que la proportion de rejets de ces métaux sera au plus égale à ces niveaux de concentration, c'est-à-dire à une répartition de 4% pour le cobalt et à 7% pour le lithium.⁶

Ainsi, pour les rejets F2, G1, J1, J2, J3, J4, J5, F4, G2, J6, J7, J8, J9 et J10, il sera considéré que le flux global pourra se répartir sans se cumuler de la façon suivante :

Tableau 190. Flux global pour les métaux en situation modifiée - bilan majorant (Rejets F2, G1, J1, J2, J3, J4, J5, F4, G2, J6, J7, J8, J9 et J10)

Métaux	Concentration (mg/m³)	% du Flux total	Flux considéré pour l'ERS (kg/h)	Flux considéré pour l'ERS (kg/j)	Flux considéré pour l'ERS (t/an)
Sb		10%	0,0041	0,0984	0,0324
Cr		10%	0,0041	0,0984	0,0324
Со		4%	0,0016	0,0394	0,0129
Cu		100%	0,0410	0,9840	0,3237
Sn	-	10%	0,0041	0,0984	0,0324
Mn	5	20%	0,0082	0,1968	0,0647
Ni		20%	0,0082	0,1968	0,0647
٧		10%	0,0041	0,0984	0,0324
Zn		10%	0,0041	0,0984	0,0324
Al		100%	0,0410	0,9840	0,3237
Li		7%	0,0029	0,0689	0,0227

Pour le calcul de risques sanitaires, en l'absence de mesures de répartition réelle par métal, le flux annuel global pour tous les métaux (9 métaux + Al + Li) sera de 0,951 t/an, avec, de façon majorante, la possibilité que ce flux contienne soit 100 % d'un des principaux métaux entrant dans les composants du process (Cu et Al), des proportions définis par le produit pouvant être rejeté (Co, Li, Mn et Ni pour les rejets liés à la cathode) et des proportions variables entre 4% et 20 % pour les métaux qui ne sont pas susceptibles d'être émis dans les autres points de rejets (Sb, Cr, Sn, V, Zn, Co, Li, Mn et Ni).

KALIÈS KA22.04.021 P a g e | 401

⁶ Après dispersion des points de rejet F2, G1, J1, J2, J3, J4, J5, F4, G2, J6, J7, J8, J9 et J10 ; la concentration maximale pour 4 % de cobalt est de 0,0008 mg/m³ soit légèrement supérieure à celle mesurée au maximum dans l'environnement (0,0007 mg/m³) et la concentration maximale pour 7 % de lithium est de 0,0014 mg/m³ soit équivalente à celle mesurée au maximum dans l'environnement.

VI.3.3.2.2 BILAN REALISTE

Ce bilan est basé sur les concentrations moyennes mesurées ou sur des prévisions d'émissions les plus réalistes (facteurs d'émission moyens, etc.).

ACC ne dispose pas à ce jour de données réelles. En raison du démarrage et de la montée en charge des différents ateliers, ACC ne peut pas fournir de données quantitatives sur les rejets de Nersac. Les hypothèses pour le bilan réaliste en situation modifiée seront les mêmes que celles utilisées en situation autorisée en dehors de la répartition des métaux qui a été revue.

Les tableaux ci-après présentent les valeurs de concentration et de flux en polluants considérés dans cette étude.

Concentrations et flux horaires moyens des rejets atmosphériques retenus en situation modifiée

								Co	oncentratio	on (mg/	′m3)							Flux horaiı	e (kg/h)				
	Parties	N° Point KALIES	Equipements	Débit moyen (Nm3/h)	Débit max (Nm3/h)	Hauteur de cheminée retenue (m)	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF NO	ox CC	0 0	3 Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3
		A1	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	20000	38	20	2,5				2,5			0,0600	0,007500	0,0000	0,0000	0,0000	0,0250	0,0000	0,0000	0,0000
	MIXING COATING CALENDERING	A2	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	24000	38	20	2,5	1,5						0,0720	0,009000	0,0360	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	G, (LETT) ETT.	C1	Traitement Ozone (cathode)	6000	6000	24,6								5	0,0000	0,000000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0300
		C2	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40 000	40000	21,95			1,5						0,0000	0,000000	0,0600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	NOTCHING	F1	Découpe laser + poussières (cathode)	27000	27000	21,95	20	2,5							0,0270	0,003375	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	NOTCHING	F2	Découpe laser + poussières (anode)	27000	27000	21,95	20	2,5							0,0270	0,003375	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
BBD1	CELL ASSEMBLY (+ BAKING)	G1	Zone d'assemblage des cellules : soudage laser, scellage	30 000	30 000	21,95	20	2,5							0,0300	0,003750	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	1st FILLING	H1	Zone de remplissage électrolyte	32 000	32 000	21,95				55		2,5			0,0000	0,000000	0,0000	0,7920	0,0000	0,0400	0,0000	0,0000	0,0000
	2nd FILLING	H2	Remplissage	17 000	17 000	20,4				55	0,5	2,5	5	5	0,0000	0,000000	0,0000	0,4208	0,0017	0,0213	0,0000	0,0850	0,0850
		15		65 000	65 000	20,4				55	0,5	2,5	5	5	0,0000	0,000000	0,0000	1,6088	0,0065	0,0813	0,0000	0,3250	0,3250
	ELECTRIC	16	1ère charge	27 000	27 000	20,4				55	0,5	2,5	5	5	0,0000	0,000000	0,0000	0,6683	0,0027	0,0338	0,0000	0,1350	0,1350
	FORMATION	17	Tere charge	45 000	45 000	20,4				55	0,5	2,5	5	5	0,0000	0,000000	0,0000	1,1138	0,0045		0,0000		
		18		27 000	27 000	20,4				55	0,5	2,5	5	5	0,0000	0,000000	0,0000	0,6683	0,0027				0,1350
		J1		5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000			0,0000	.
	MODULE	J2	Caractérisation de l'ensemble, soudage laser	5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000		0,0000		.
	ASSEMBLY	J3	des modules et insertion	5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000		0,0000	1	
		J4	des busbars (colle)	5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000		0,0000	0,0000	
		J5		5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000	0,0000	0,0000	0,0000	0,0000
	CHAUDIERES VAPEUR (gaz naturel)	K (K1 +K2)	Chaudières de puissance max de 22,3 MW	43050	43050	38						42,	5 7,	5	0,0000	0,000000	0,0000	0,0000	0,0000	0,0000	1,8296	0,3229	0,0000

							Concentration (mg/m3)									ı	Flux horair	e (kg/h)					
	Parties	N° Point KALIES	Equipements	Débit moyen (Nm3/h)	Débit max (Nm3/h)	Hauteur de cheminée retenue (m)	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF NO:	c CO	О3	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3
		А3	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	20000	38	20	2,5				2,5			0,0600	0,007500	0,0000	0,0000	0,0000	0,0250	0,0000	0,0000	0,0000
	MIXING COATING CALENDERING	A4	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	24000	38	20	2,5	1,5						0,0720	0,009000	0,0360	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
		C5	Traitement Ozone (cathode)	6000	6000	24,6								5	0,0000	0,000000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0300
		C6	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40 000	40000	21,95			1,5						0,0000	0,000000	0,0600	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	NOTCHING	F3	Découpe laser + poussières (cathode)	27000	27000	21,95	20	2,5							0,0270	0,003375	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
BBD2	NOTCHING	F4	Découpe laser + poussières (anode)	27000	27000	21,95	20	2,5							0,0270	0,003375	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	CELL ASSEMBLY (+ BAKING)	G2	Zone d'assemblage des cellules : soudage laser, scellage	30 000	30 000	21,95	20	2,5							0,0300	0,003750	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	1st FILLING	Н3	Zone de remplissage électrolyte	32 000	32 000	21,95				55		2,5			0,0000	0,000000	0,0000	0,7920	0,0000	0,0400	0,0000	0,0000	0,0000
	2nd FILLING	H4	Remplissage	17 000	17 000	20,4				55	0,5	2,5	5	5	0,0000	0,000000	0,0000	0,4208	0,0017				0,0850
	ELECTRIC	l13		65 000	65 000	20,4				55	0,5	2,5	5	-	0,0000	0,000000	0,0000	1,6088	0,0065				0,3250
	ELECTRIC FORMATION	114	1ère charge	27 000	27 000	20,4				55	0,5	2,5	5	-	0,0000	0,000000	0,0000	0,6683	0,0027				0,1350
	ANTIFEU	I15 I16		45 000 27 000	45 000 27 000	20,4				55 55	0,5	2,5	5	-	0,0000	0,000000	0,0000	1,1138 0,6683	0,0045				0,2250 0,1350
		J6		5 000	5 000	20,4	20	2,5		10	0,3	2,3	,	,	0,0000	0,000625	0,0000	0,0500	0,0027		0,0000		
		J7	Caractérisation de	5 000	5 000	20,4	20	2,5		10				+	0,0050	0,000625	0,0000	0,0500	0,0000		0,0000	0,0000	
	MODULE ASSEMBLY	J8	l'ensemble, soudage laser des modules et insertion	5 000	5 000	20,4	20	2,5		10				1	0,0050	0,000625	0,0000	0,0500	0,0000		0,0000	0,0000	
	ASSEIVIBLY	J9	des busbars (colle)	5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000	0,0000	0,0000	0,0000	0,0000
		J10		5 000	5 000	20,4	20	2,5		10					0,0050	0,000625	0,0000	0,0500	0,0000		0,0000		
					TOTALS	SITE ACC									0,4820	0,060	0,192	11,044	0,036	0,583	1,830	2,133	1,870

										Flux ann	uel (t/an)								Flux jouri	nalier (kg/	' j)			
	Parties	N° Point KALIES	Equipements	Débit moyen (Nm3/h)	Débit max (Nm3/h)	Hauteur de cheminée (m)	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	03
		A1	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	20000	38	0,474	0,059	0,000	0,000	0,000	0,197	0,000	0,000	0,000	1,440	0,180	0,000	0,000	0,000	0,600	0,000	0,000	0,000
	MIXING COATING CALENDERING	A2	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	24000	38	0,569	0,071	0,284	0,000	0,000	0,000	0,000	0,000	0,000	1,728	0,216	0,864	0,000	0,000	0,000	0,000	0,000	0,000
		C1	Traitement Ozone (cathode)	6000	6000	24,6	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,237	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,720
		C2	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40 000	40000	21,95	0,000	0,000	0,474	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,440	0,000	0,000	0,000	0,000	0,000	0,000
		F1	Découpe laser + poussières (cathode)	27000	27000	21,95	0,213	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,648	0,081	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	NOTCHING	F2	Découpe laser + poussières (anode)	27000	27000	21,95	0,213	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,648	0,081	0,000	0,000	0,000	0,000	0,000	0,000	0,000
BBD1	CELL ASSEMBLY (+ BAKING)	G1	Zone d'assemblage des cellules : soudage laser, scellage	30 000	30 000	21,95	0,237	0,030	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,720	0,090	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	1st FILLING	H1	Zone de remplissage électrolyte	32 000	32 000	21,95	0,000	0,000	0,000	6,254	0,000	0,316	0,000	0,000	0,000	0,000	0,000	0,000	19,008	0,000	0,960	0,000	0,000	0,000
	2nd FILLING	H2	Remplissage	17 000	17 000	20,4	0,000	0,000	0,000	3,322	0,013	0,168	0,000	0,671	0,671	0,000	0,000	0,000	10,098	0,041	0,510	0,000	2,040	2,040
		15		65 000	65 000	20,4	0,000	0,000	0,000	12,703	0,051	0,642	0,000	2,566	2,566	0,000	0,000	0,000	38,610	0,156	1,950	0,000	7,800	7,800
	ELECTRIC	16	1àra charga	27 000	27 000	20,4	0,000	0,000	0,000	5,277	0,021	0,266	0,000	1,066	1,066	0,000	0,000	0,000	16,038	0,065	0,810	0,000	3,240	3,240
	FORMATION	17	1ère charge	45 000	45 000	20,4	0,000	0,000	0,000	8,794	0,036	0,444	0,000	1,777	1,777	0,000	0,000	0,000	26,730	0,108	1,350	0,000	5,400	5,400
		18		27 000	27 000	20,4	0,000	0,000	0,000	5,277	0,021	0,266	0,000	1,066	1,066	0,000	0,000	0,000	16,038	0,065	0,810	0,000	3,240	3,240
		J1	Contániosticas de	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
		J2	Cartérisation de l'ensemble, soudage	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	MODULE ASSEMBLY	J3	laser des modules et	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
		J4	insertion des busbars (colle)	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
		J5	(355)	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	CHAUDIERES VAPEUR (gaz naturel)	K (K1 +K2)	Chaudières de puissance max de 22,3 MW	43050	43050	38	0,000	0,000	0,000	0,000	0,000	0,000	15,413	2,720	0,000	0,000	0,000	0,000	0,000	0,000	0,000	43,911	7,749	0,000

										Flux ann	uel (t/an)								Flux journ	nalier (kg/	'j)			
	Parties	N° Point KALIES	Equipements	Débit moyen (Nm3/h)	Débit max (Nm3/h)	Hauteur de cheminée (m)	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3	Poussières	(Sb+Cr+Co+ Cu+Sn+Mn +Ni+V+Zn+ Al+Li)	COV issus du solvant 1	cov	COV Annexe IVd	HF	NOx	со	О3
		А3	Station de dosage (cathode + anode) Mélanges (anode) mixing	20000	20000	38	0,474	0,059	0,000	0,000	0,000	0,197	0,000	0,000	0,000	1,440	0,180	0,000	0,000	0,000	0,600	0,000	0,000	0,000
	MIXING COATING CALENDERING	A4	Mélanges (cathode) Installations de nettoyage (anode et cathode)	24000	24000	38	0,569	0,071	0,284	0,000	0,000	0,000	0,000	0,000	0,000	1,728	0,216	0,864	0,000	0,000	0,000	0,000	0,000	0,000
		C5	Traitement Ozone (cathode)	6000	6000	24,6	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,237	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,720
		C6	Vapeurs solvantées du condenseur/Scrubber (récupération solvant 1) 4 lignes	40 000	40000	21,95	0,000	0,000	0,474	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	1,440	0,000	0,000	0,000	0,000	0,000	0,000
	NOTCHING	F3	Découpe laser + poussières (cathode)	27000	27000	21,95	0,213	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,648	0,081	0,000	0,000	0,000	0,000	0,000	0,000	0,000
BBD2	NOTCHING	F4	Découpe laser + poussières (anode)	27000	27000	21,95	0,213	0,027	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,648	0,081	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	CELL ASSEMBLY (+ BAKING)	G2	Zone d'assemblage des cellules : soudage laser, scellage	30 000	30 000	21,95	0,237	0,030	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,720	0,090	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	1st FILLING	НЗ	Zone de remplissage électrolyte	32 000	32 000	21,95	0,000	0,000	0,000	6,254	0,000	0,316	0,000	0,000	0,000	0,000	0,000	0,000	19,008	0,000	0,960	0,000	0,000	0,000
	2nd FILLING	H4	Remplissage	17 000	17 000	20,4	0,000	0,000	0,000	3,322	0,013	0,168	0,000	0,671	0,671	0,000	0,000	0,000	10,098	0,041	0,510	0,000	2,040	2,040
		l13		65 000	65 000	20,4	0,000	0,000	0,000	12,703	0,051	0,642	0,000	2,566	2,566	0,000	0,000	0,000	38,610	0,156	1,950	0,000	7,800	7,800
	ELECTRIC FORMATION	l14	1 àra charga	27 000	27 000	20,4	0,000	0,000	0,000	5,277	0,021	0,266	0,000	1,066	1,066	0,000	0,000	0,000	16,038	0,065	0,810	0,000	3,240	3,240
	ANTIFEU	l15	1ère charge	45 000	45 000	20,4	0,000	0,000	0,000	8,794	0,036	0,444	0,000	1,777	1,777	0,000	0,000	0,000	26,730	0,108	1,350	0,000	5,400	5,400
		I16		27 000	27 000	20,4	0,000	0,000	0,000	5,277	0,021	0,266	0,000	1,066	1,066	0,000	0,000	0,000	16,038	0,065	0,810	0,000	3,240	3,240
		J6	Caractárication de	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	MODULE	J7	Caractérisation de l'ensemble, soudage	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	MODULE ASSEMBLY	J8	laser des modules et	5 000	5 000	20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	(colle)					20,4	0,039	0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	J10 5 000 5 000 20,							0,005	0,000	0,395	0,000	0,000	0,000	0,000	0,000	0,120	0,015	0,000	1,200	0,000	0,000	0,000	0,000	0,000
	J10 5 000 5 000 20, Total site ACC							0,476	1,516	87,199	0,286	4,599	15,413	17,012	14,766	11,568	1,446	4,608	265,044	0,869	13,980	43,911	51,189	44,880

En ce qui concerne les métaux, la répartition des flux de chaque métal retenu est variable en fonction de la nature des matériaux utilisés dans le process. La répartition est identique à celle présentée pour le bilan majorant. De la même manière qu'en situation autorisée, il a été pris en compte pour la hiérarchisation des risques, la famille de métaux visée par l'arrêté du 02 février 1998 modifié, de l'aluminium et du Lithium, sans être cumulable.

Comme pour le bilan majorant, la répartition des métaux est différenciée selon les points de rejets.

Ainsi, pour les rejets A1, A2, F1, A3, A4 et F3 (pouvant contenir des rejets de « poudre cathode 2 »), il sera considéré que le flux global pourra se répartir sans se cumuler de la façon suivante :

Tableau 193. Répartition des f	lux pour les métaux er	n situation modifiée (l	bilan moyen)

Métaux	Concentration (mg/m³)	% du Flux total	Flux moyens (kg/h)	Flux moyens (kg/j)	Flux moyens (t/an)
Sb		10%	0,0040	0,0954	0,0314
Cr		10%	0,0040	0,0954	0,0314
Со		20%	0,0080	0,1908	0,0628
Cu		100%	0,0398	0,9540	0,3139
Sn		10%	0,0040	0,0954	0,0314
Mn	2,5	20%	0,0080	0,1908	0,0628
Ni		80%	0,0318	0,7632	0,2511
V		10%	0,0040	0,0954	0,0314
Zn		10%	0,0040	0,0954	0,0314
Al		100%	0,0398	0,9540	0,3139
Li		10%	0,0040	0,0954	0,0314

Pour les rejets F2, G1, J1, J2, J3, J4, J5, F4, G2, J6, J7, J8, J9 et J10), il sera considéré que le flux global pourra se répartir sans se cumuler de la façon suivante :

Tableau 194. Flux global pour les métaux en situation modifiée - bilan moyen (Rejets F2, G1, J1, J2, J3, J4, J5, F4, G2, J6, J7, J8, J9 et J10)

Métaux	Concentration (mg/m³)	% du Flux total	Flux considéré pour l'ERS (kg/h)	Flux considéré pour l'ERS (kg/j)	Flux considéré pour l'ERS (t/an)
Sb		10%	0,00208	0,0499	0,0164
Cr		10%	0,00208	0,0499	0,0164
Со		4%	0,00083	0,0200	0,0066
Cu		100%	0,02080	0,4992	0,1642
Sn	_	10%	0,00208	0,0499	0,0164
Mn	2,5	20%	0,00416	0,0998	0,0328
Ni		20%	0,00416	0,0998	0,0328
V		10%	0,00208	0,0499	0,0164
Zn		10%	0,00208	0,0499	0,0164
Al		100%	0,02080	0,4992	0,1642
Li		7%	0,00146	0,0349	0,0115

Le flux moyen annuel pour la somme des métaux (9 métaux + Al + Li) a été estimé à 0,476 t/an en situation modifiée.

VI.3.3.3 FIABILITE DU BILAN DES EMISSIONS

Le bilan des émissions a été estimé de la même que dans le premier dossier de demande d'autorisation d'exploiter ayant fait l'objet d'un arrêté préfectoral d'autorisation d'exploiter en date du 27 décembre 2021, sur la base de la ligne pilote, des valeurs réglementaires et de l'efficacité des systèmes de traitement qui seront mis en place. La répartition des métaux a été affinée en tenant compte des proportions de métaux dans les produits utilisés et des métaux qui sont peu susceptibles d'être rejetés à certains points de rejets.

Des mesures directes sur des installations similaires ne sont pas à ce jour possibles.

Les substances retenues sont basées sur la nature des matériaux utilisés et sur leurs conditions d'utilisation (mélanges, découpes, températures, extractions, etc.).

Les émissions faibles envisagées tiennent compte de l'objectif de la société ACC qui est de récupérer les émissions de COV issus du solvant 1 pour les régénérer et de récupérer les éventuelles poussières pour les réutiliser/valoriser ultérieurement.

Le temps de fonctionnement annuel est ajusté à la réalité du temps de fonctionnement du process. Il sera représentatif de l'activité prévisionnelle. Il n'est pas prévu d'avoir un mode de fonctionnement dégradé.

VI.3.4 VERIFICATION DE LA CONFORMITE DES EMISSIONS

Les concentrations fixées pour les émissions de la société ACC respectent les prescriptions réglementaires de :

- l'article 39 de l'arrêté du 14/12/13 relatif aux prescriptions générales applicables aux installations relevant du régime de l'enregistrement au titre de la rubrique n°2560 de la nomenclature des installations classées pour la protection de l'environnement;
- l'article 27 de l'arrêté du 02/02/98 relatif aux prélèvements et à la consommation d'eau ainsi qu'aux émissions de toute nature des installations classées pour la protection de l'environnement soumises à autorisation;
- l'annexe I de l'arrêté du 13/12/19 relatif aux prescriptions générales applicables aux installations relevant du régime de la déclaration au titre de la rubrique n°1978 (installations et activités utilisant des solvants organiques) de la nomenclature des installations classées pour la protection de l'environnement;
- L'article 6.5 de l'arrêté du 12/05/2020 relatif aux prescriptions générales applicables aux installations relevant du régime de l'enregistrement au titre de la rubrique 2940 de la nomenclature des installations classées pour la protection de l'environnement;
- L'article 50 de l'arrêté du 01/06/2015 relatif aux prescriptions générales applicables aux installations relevant du régime de l'enregistrement au titre de la rubrique 4331 de la nomenclature des installations classées pour la protection de l'environnement;
- Les valeurs limites (NEA-MTD) liées aux MTD applicables.

Les valeurs de concentration considérées dans l'ERS ont été établies à partir des VLE définies dans l'arrêté préfectoral. De nouvelles VLE ont été établies pour le point de rejet de la chaudière issues des MTD applicables pour la rubrique IED 3110.

A titre indicatif, les valeurs limites des textes précités sont reprises dans le tableau suivant.

Tableau 195. Comparaison des valeurs limites relatives aux rejets atmosphériques du site ACC

Composé	AP du 27/12/21	Arrêté du 02/02/98	AM rubrique 2560	AM rubrique 2940	AM rubrique 4331	AM rubrique 1978	MTD Traitement de surface	MTD Installations de combustion
Poussières	40 mg/m ³	100 mg/m³ (si flux ≤ 1 kg/h) 40 mg/m³ (si flux > 1 kg/h)	100 mg/m³ (si flux ≤ 1 kg/h) 40 mg/m³ (si flux > 1 kg/h)	100 mg/m³ (si flux ≤ 1 kg/h) 40 mg/m³ (si flux > 1 kg/h)	100 mg/m ³ (si flux ≤ 1 kg/h) 40 mg/m ³ (si flux > 1 kg/h)	/	/	/
HF	5 mg/m ³	5 mg/m ³ (si flux > 500 g/h)	/	/	5 mg/m³ (si flux > 500 g/h)	/	/	/
COVNM	110 mg/m ³	110 mg/m ³ (si flux > 2 kg/h)	/	/	110 mg/m ³ (si flux > 2 kg/h)	/	/	/
COV annexe IVd (COV n°7)	1 mg/m ³	VLE fixée par AP si flux > 25 g/h	/	/	/	/	/	/
COV issus du solvant 1	2 mg/m ³	2 mg/m ³ (si flux ≥ 10 g/h)	2 mg/m^3 (si flux ≥ 10 g/h)	/	2 mg/m ³ (si flux ≥ 10 g/h)	2 mg/m ³ (si flux ≥ 10 g/h)	/	/
Sb+Cr+Co+Cu+ Sn+Mn+Ni+V+ Zn	5 mg/m ³	5 mg/m ³ (si flux > 25 g/h)	5 mg/m ³ (si flux > 25 g/h)	/	5 mg/m ³ (si flux > 25 g/h)	/	/	/
NOx	100 mg/m³ pour les chaudières	500 mg/m ³ (si flux ≥ 25 kg/h)	500 mg/m ³ (si flux ≥ 25 kg/h)	/	/	/	/	30-85 mg/m³
СО	10 mg/m ³ pour le process et 100 mg/m ³ pour les chaudières	VLE fixé par arrêté préfectoral	/	/	/	/	/	< 5-15 mg/m³
O ₃	10 mg/m ³	/	/	/	/	/	/	/

VI.4. ÉVALUATION DES ENJEUX ET DES VOIES D'EXPOSITION

VI.4.1 DELIMITATION DE LA ZONE D'ETUDE

La zone d'étude retenue correspond au périmètre d'affichage de l'enquête publique à savoir 3 km autour du site.

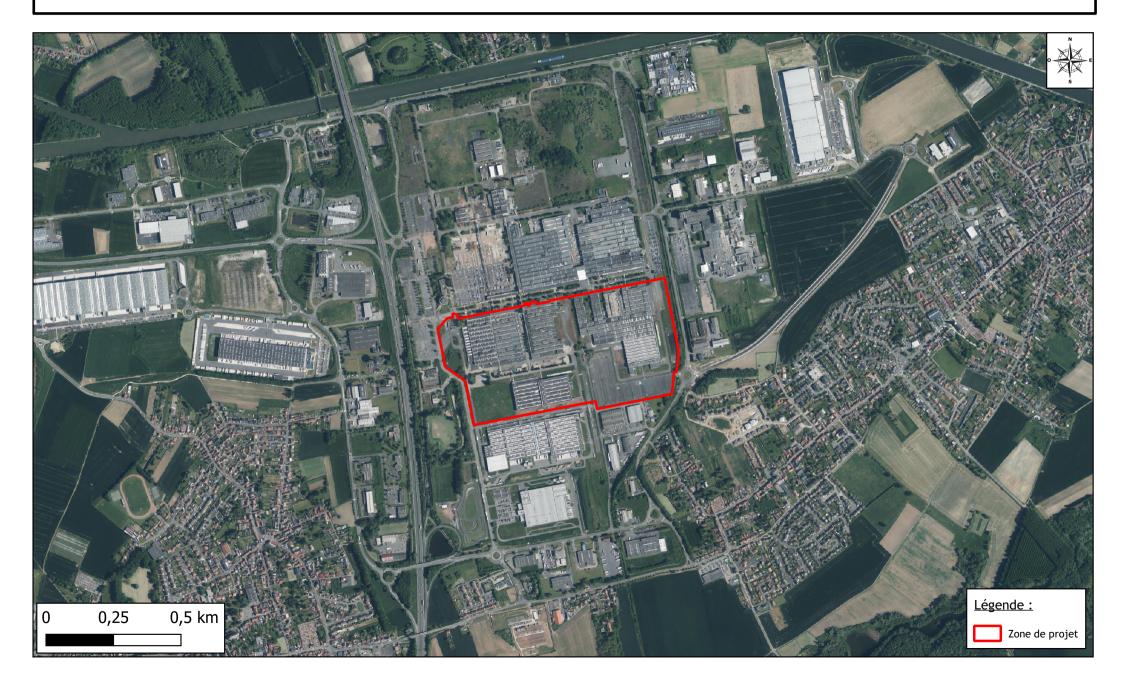
VI.4.2 DESCRIPTION DES POPULATIONS ET DES USAGES

VI.4.2.1 LOCALISATION DU SITE

Le site AUTOMOTIVE CELLS COMPANY est localisé à cheval sur les communes de Douvrin et de Billy-Berclau, sur le Parc des industries Artois-Flandres. Les coordonnées Lambert 93 du centre du site sont les suivantes :

- X = 689 219 m
- Y = 7 046 911 m.

Le plan du site, à l'échelle 1/5 000, en annexe 1 indique les dispositions projetées de l'installations.


Les caractéristiques du terrain d'implantation et des terrains environnants sont illustrées sur le plan au 1/25 000 en page suivante et détaillés ci-après :

- Au nord : le site PSA/STELLANTIS de Douvrin (FRANÇAISE DE MECANIQUE), le boulevard Nord, le Canal d'Aire à la Bassée puis les habitations de la commune de Salomé,
- A l'est: le boulevard Est en limite de propriété, l'entreprise de fabrication de fibre optique DRAKA COMTEQ, la société MINOT RECYCLAGE, des parcelles agricoles et des habitations de la commune de Billy-Berclau,
- Au sud : l'entreprise logistique BILS DEROO, l'entreprise de fabrication de chaudières ATLANTIC puis le boulevard Sud,
- A l'ouest : une ligne électrique, la route nationale RN47, des entreprises de la zone industrielle, des parcelles agricoles et des habitations de la commune de Douvrin.

La société ACC est implantée sur d'anciens terrains de la Française de Mécanique, site PSA/STELLANTIS de Douvrin, à l'adresse suivante : 1 173 Boulevard Est, 62 138 BILLY-BERCLAU.

La vue aérienne de la page suivante permet de localiser le projet dans son environnement.

Vue aérienne de la zone de projet dans son environnement

VI.4.2.2 DONNEES DE L'ETAT INITIAL

L'étude d'impact a permis de dresser un état initial de la zone d'étude et d'identifier les usages qui en sont fait. Une synthèse est présentée dans le tableau suivant.

Tableau 196. Tableau de synthèse de l'état initial de la zone d'étude

Thème	Etat initial et usages
	Plusieurs terrains agricoles sont localisés à proximité de la zone d'étude.
	La commune de Douvrin compte 658 ha de surface agricole utilisée (SAU) et la commune de Billy-Berclau en compte 172 (de type culture générale).
	Des jardins potagers sont présents à 240 m au sud de la zone du projet.
Contexte agricole	Les zones d'habitations les plus proches sont :
	• à 90 m à l'est/sud-est à Billy-Berclau,
	à 510 m à l'ouest à Douvrin,
	 à 570 m au sud à Douvrin. Ces habitations sont susceptibles de présenter des jardins potagers.
	Les cours d'eau localisés dans la zone d'étude sont le Canal d'Aire à la Bassée situé à 850 m au nord, le Flot de Wingles à 1,2 km à l'est et le Canal de la Deûle à 2,1 km à l'est.
	Le Canal d'Aire à la Bassée le plus proche du site appartient à la masse d'eau « Canal d'Aire à la Bassée ».
Eaux de surface	D'après les données en ligne, l'état écologique est moyen pour un objectif de bon potentiel en 2027 et l'état chimique est médiocre pour un objectif de bon état en 2033.
	La pêche est pratiquée sur le secteur du Canal d'Aire à la Bassée. A noter, la présence d'une association de pêche sur le secteur, « L'amicale des pêcheurs de Wingles - Douvrin - Billy-Berclau ».
	Le Canal d'Aire à la Bassée est une voie navigable fréquentée par des bateaux de plaisance et des bateaux de commerces.
	Au droit du site, 4 aquifères sont susceptibles d'être présents :
	la nappe superficielle d'alluvions modernes,
	 la nappe de la craie blanche sénonienne, la nappe de la craie du Turonien supérieur,
	les marnes du Tunorien moyen.
Sols et eaux souterraines	Le sol présente une pollution en BTEX, TCA, HCT et HCV du fait de la précédence activité de la Française de Mécanique.
Souterraines	La nappe souterraine au droit du site est la nappe de la craie de la Vallée de la Deûle.
	 Etat quantitatif bon et état chimique mauvais. La nappe est affleurante, elle se trouve à environ 6 m.
	La zone de projet est localisée en périmètre rapprochée et éloignée de protection des captages en eau potable. Les captages de SALOME se trouvent en aval du site par rapport au sens d'écoulement.

Thème	Etat initial et usages				
Thème Air	Les rejets atmosphériques de la zone considérée sont principalement dus : • aux activités industrielles : entreprises voisines de la zone d'activités Artois-Flandres, • aux activités résidentielles : chauffage des logements à proximité immédiate du site, • à la circulation routière : axes routiers, notamment les routes de la zone industrielle, la RN47 et les routes départementales D941 et D163 • au trafic ferroviaire : ligne TER au nord du site.				
	La station de mesure de qualité de l'air la plus proche est celle de Harnes localisée à 9 km au sud-est de la zone de projet. Les objectifs de qualité de l'air sont respectés au niveau de cette station pour les polluants mesurés.				

VI.4.2.3 CARACTERISATION DES POPULATIONS

Les lieux où une exposition de la population aux rejets du site est envisageable peuvent être les suivants :

- les habitats (actuels et futurs),
- les établissements recevant du public, dont les établissements accueillant des personnes sensibles : établissements scolaires, crèches, maisons de retraite, établissements de santé, centres sportifs.

VI.4.2.3.1 DESCRIPTION GENERALE DE LA POPULATION DE LA ZONE D'ETUDE

Les données du recensement de 2019 (INSEE) des différentes communes de la zone d'étude sont présentées dans le tableau ci-après.

Population 0 - 14 ans 15 - 59 ans Communes 60 ans et plus totale Douvrin 5 680 22,1% 56,8 % 21,1% Billy-Berclau 4 885 20,8% 57% 22.2% 2 945 20,5% Salomé 21,1% 58,4% Wingles 8 756 21,5% 57,4% 21,1% 1 281 23% 61.9% 15,1% Hantay Hulluch 3 405 19,6% 57,1% 23,3% Bauvin 5 086 18,6% 57% 24,4% 1 998 20,5% 21,3% Marquillies 58,2% 19,3% La Bassée 6 509 64,5% 16,2% Meurchin 3 748 20,7% 22,6% 56,7% Bénifontaine 356 16,3% 58,8% 24,9% Haisnes 4 398 20,9% 55,6% 23,5% Sainghin-en-Weppes 5 481 19,8% 56,6% 23,6% Vendin-le-Vieil 8 479 21%,5 58,7% 19,8% Illies 1 635 23,8% 59,3% 16,9%

Tableau 197. Données du recensement de l'INSEE

Les plus proches habitations sont les suivantes :

- à 90 m à l'est/sud-est à Billy-Berclau,
- à 510 m à l'ouest à Douvrin,
- à 570 m au sud à Douvrin.

VI.4.2.3.2 PROJETS IMMOBILIERS - ZONES A CONSTRUIRE

Plusieurs zones 1AUa, relatives à des terrains non équipés ou partiellement équipés réservés pour une urbanisation future, à vocation mixte, où ne sont admis que les opérations d'ensemble, sont présentes à proximité de la zone d'étude sur les communes de Douvrin et Billy-Berclau d'après le zonage du Plan Local Intercommunal. Ces zones sont situées à proximité des zones résidentielles déjà existantes.

VI.4.2.3.3 ÉQUIPEMENTS SPORTIFS ET DE LOISIRS

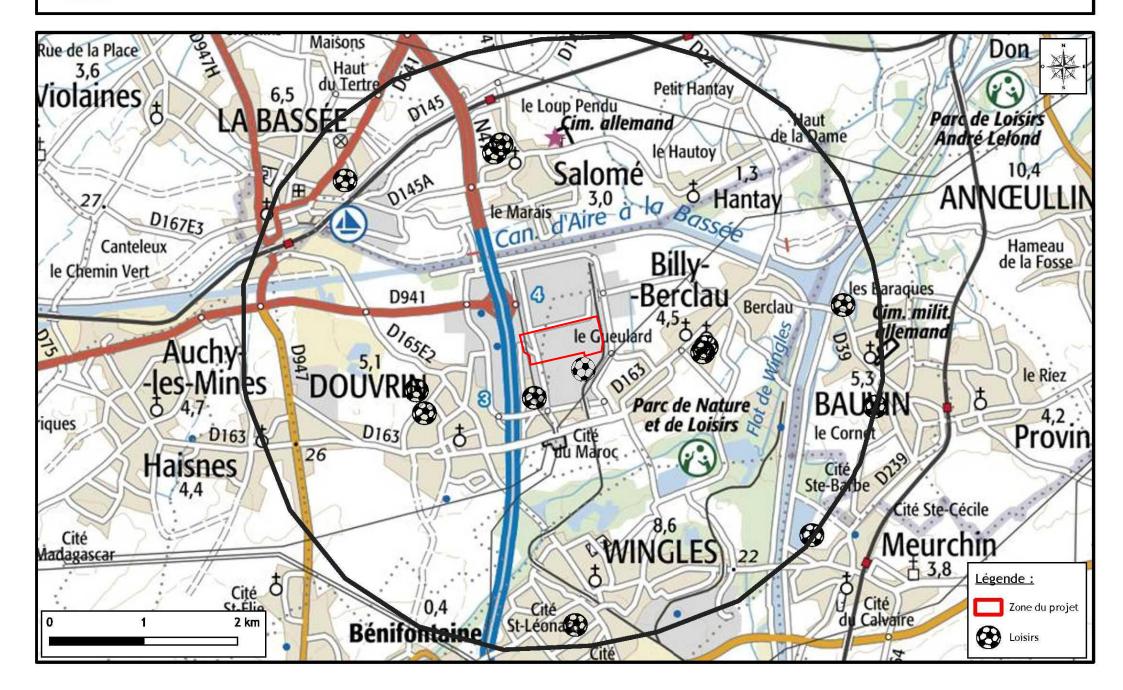

Les équipements sportifs et de loisirs présents au niveau de la zone d'étude sont les suivants (source : http://www.res.sports.gouv.fr) :

Tableau 198. Équipements sportifs et de loisirs

Commune	Nom de la structure	Localisation et orientation par rapport au projet
BILLY-BERCLAU	Padel Campus Arena	20 m au sud
DOUVRIN	KLL Loisirs (circuit de karting)	320 m au sud-ouest
BILLY-BERCLAU	Complexe sportif Francis Top	950 m à l'est
BILLY-BERCLAU	Salle Léo Lagrange (Gymnase)	970 m à l'est
DOUVRIN	Complexe sportif Jojo Douvrin	1,2 km à l'ouest
BILLY-BERCLAU	Dojo Marcel Cabiddu	1,3 km à l'est
DOUVRIN	Stade Omnisport	1,3 km à l'ouest
SALOME	Salle L.FOLCKE	1,9 km au nord
SALOME	Salle de sport Dominique Cornette	1,9 km au nord
BAUVIN	Stade J.B. TREDEZ	2,5 km à l'est
LA BASSEE	Stade municipal Roland Joly	2,5 km au nord-ouest
WINGLES	Stade Léonard Danel	2,7 km au sud
MEURCHIN	Stade Lacroix-Bourgeois	2,9 km au sud-est

Ces équipements sportifs et de loisirs sont localisés sur la carte en page suivante.

Localisation des équipements sportifs

VI.4.2.3.4 IDENTIFICATION DES PROJETS A EFFETS CUMULES

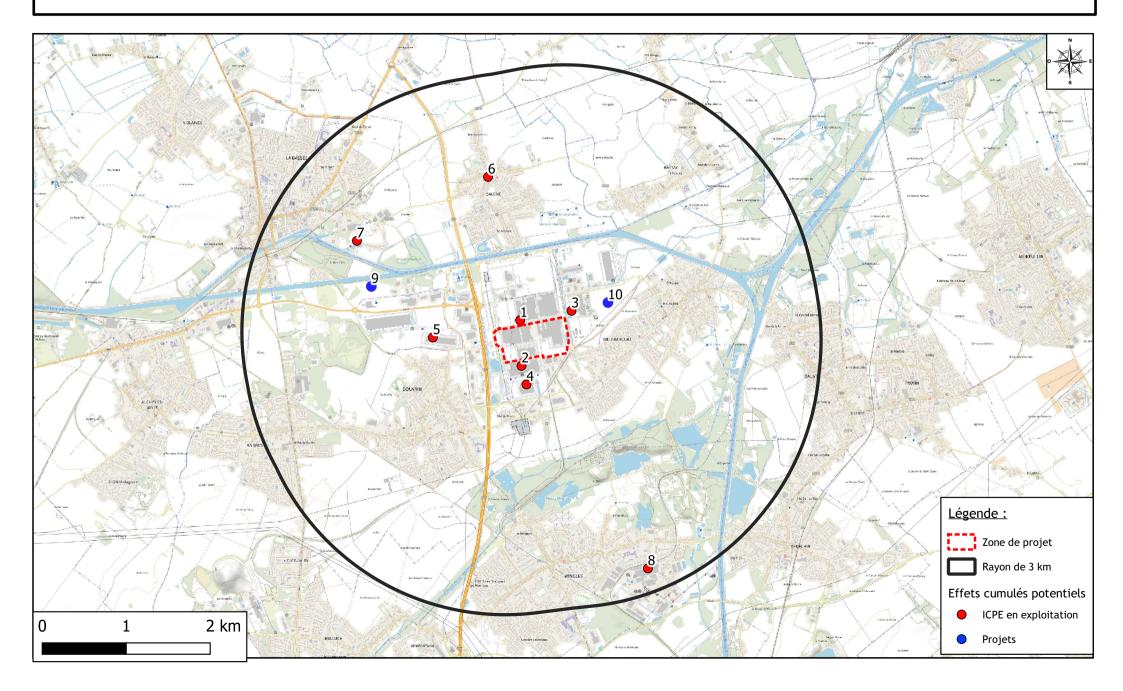

Les projets existants ou approuvés ainsi que les sites existants susceptibles d'avoir des incidences cumulées avec le présent projet recensés au niveau de la zone d'étude sont détaillés au § IX. et repris dans le tableau suivant :

Tableau 199. Projets et sites industriels retenus pour le cumul des incidences

		es maastrets reterias pour te el		
N° sur le plan	Nom du site ou du projet	Situation administrative	Effets cumulés retenus	Distance et orientation par rapport au projet
1	Construction de véhicules automobiles - FRANCAISE DE MECANIQUE - DOUVRIN	En exploitation - Arrêté préfectoral d'autorisation environnementale en date du 12 janvier 2006	Trafic, émissions atmosphériques, consommation en eau	En limite de propriété au nord
2	Plateforme logistique - SIMASTOCK (BILS - DEROO) - DOUVRIN	En exploitation - Site autorisé depuis le 8 février 2019	Trafic (+ émissions atmosphériques associées)	En limite de propriété au sud
3	Fabrication de fibres optiques - DRAKA COMTEQ FRANCE - HAINES	En exploitation - Site autorisé depuis le 7 novembre 2001, Seveso seuil bas	Emissions atmosphériques	A 100 m au nord- est
4	Fabrication de radiateurs et de chaudières pour le chauffage central - SOCIETE INDUSTRIELLE DE CHAUFFAGE (SIC) - BILLY BERCLAU	En exploitation, site soumis à autorisation depuis le 20 novembre 2015	Emissions atmosphériques	A 240 m au sud
5	Plateforme logistique - PROLOGIS France LXXII E.U.R.L - BILLY BERCLAU	En exploitation, site soumis à autorisation depuis le 19 juin 2015, Seveso seuil bas	Trafic (+ émissions atmosphériques associées)	A 450 m à l'ouest
6	Construction de route et autoroute - SIORAT - SALOME	En exploitation, site soumis à enregistrement autorisé par l'arrêté préfectoral du 14 avril 2006	Emissions atmosphériques	A 1,8 km au nord
7	Plateforme logistique - TRANSPORT DEPAEUW - SALOME	En exploitation, site soumis à enregistrement autorisé par l'arrêté préfectoral du 13/03/2018	Trafic	A 2 km au nord-ouest
8	Fabrication de verre creux - O-I France SAS (ex O-I MANUFACTURING) - WINGLES	En exploitation, site soumis à autorisation depuis le 5 août 1996	Emissions atmosphériques	A 2,7 km au sud
9	Projet de construction d'un entrepôt logistique situé sur la commune de DOUVRIN	Avis examen au cas par cas rendu le 13/01/2022 : évaluation environnementale	Trafic (+ émissions atmosphériques associées)	A 1,6 km au nord- ouest
10	Projet de construction d'une plateforme logistique au sein du parc des industries Artois- Flandres, sur la commune de BILLY BERCLAU (62)	Avis de la MRAe rendu le 08/09/2020 et actualisé le 03/11/2020 Avis examen au cas par cas rendu le 28/08/2018 : évaluation environnementale	Trafic (+ bruit et émissions atmosphériques associées)	A 530 m à l'est

Ces projets susceptibles d'avoir des incidences cumulées avec le projet sont localisés sur la carte en page suivante.

Localisation des projets et ICPE susceptibles d'engendrer des effets cumulés avec le projet d'ACC

VI.4.2.3.5 RECENSEMENT DES POPULATIONS SENSIBLES

Les communes concernées comprennent également des populations dites sensibles, à savoir :

- Les personnes malades,
- Les femmes enceintes et les nouveaux nés,
- Les personnes handicapées (enfants et adultes),
- Les personnes âgées,
- · Les enfants préscolaires,
- Les enfants et adolescents.

Les principaux établissements sensibles situés dans la zone d'étude sont présentés dans les tableaux ci-après.

Tableau 200. Structures d'accueil pour enfants Source : http://www.mon-enfant.fr

Numéro sur plan	Commune	Nom de la structure d'accueil pour enfants	Distance et orientation par rapport au projet
1	DOUVRIN	Multi-accueil Rigolo comme la vie	540 m au sud
2	BILLY-BERCLAU	Micro-crèche Rigolo comme la vie	670 m au sud-est
3	DOUVRIN	Multi Accueil « Les Lutins du Parc »	1,2 km au sud-ouest
4	DOUVRIN	Multi-accueil municipal de Douvrin	1,3 km au sud-ouest
5	WINGLES	Etablissement multi-accueil « Jacques Prévert »	2,7 km au sud
6	HAISNES	Micro-crèche Les ch'tis Mômes	2,9 km au sud-ouest

Tableau 201. Établissements scolaires

Source: http://www.education.gouv.fr, http://www.letudiant.fr, http://www.ac-lille.fr/

Numéro sur plan	Commune	Nom de la structure	Distance et orientation par rapport au projet
1	BILLY BERCLAU	Ecole primaire Jean Jaurès	527 m au sud-est
2	BILLY BERCLAU	Ecole maternelle Claude Debussy	542 m au sud-est
3	HAISNES	Collège Antoine de Saint-Exupéry	1 km au sud-est
4	DOUVRIN	Ecole primaire privée Sainte Florine	1,1 km au sud-ouest
5	DOUVRIN	Ecole maternelle Les Capucines	1,2 km au sud-ouest
6	DOUVRIN	Ecole primaire François Villon	1,2 km au sud-ouest
7	BILLY BERCLAU	Ecole primaire Jérémie Poteau	1,2 km à l'est
8	DOUVRIN	Ecole maternelle Les Glycines	1,3 km à au sud-ouest
9	DOUVRIN	Ecole primaire Marie Curie	1,3 km au sud-ouest
10	SALOME	Ecole maternelle La Buissonnière	1,4 km au nord
11	SALOME	Ecole primaire Mendes France	1,5 km au nord
12	HANTAY	Ecole primaire Jean Mace	1,7 km au nord-est
13	WINGLES	Ecole maternelle Emilienne Moreau	2,3 km au sud
14	WINGLES	Ecole primaire Jules Ferry	2,3 km au sud

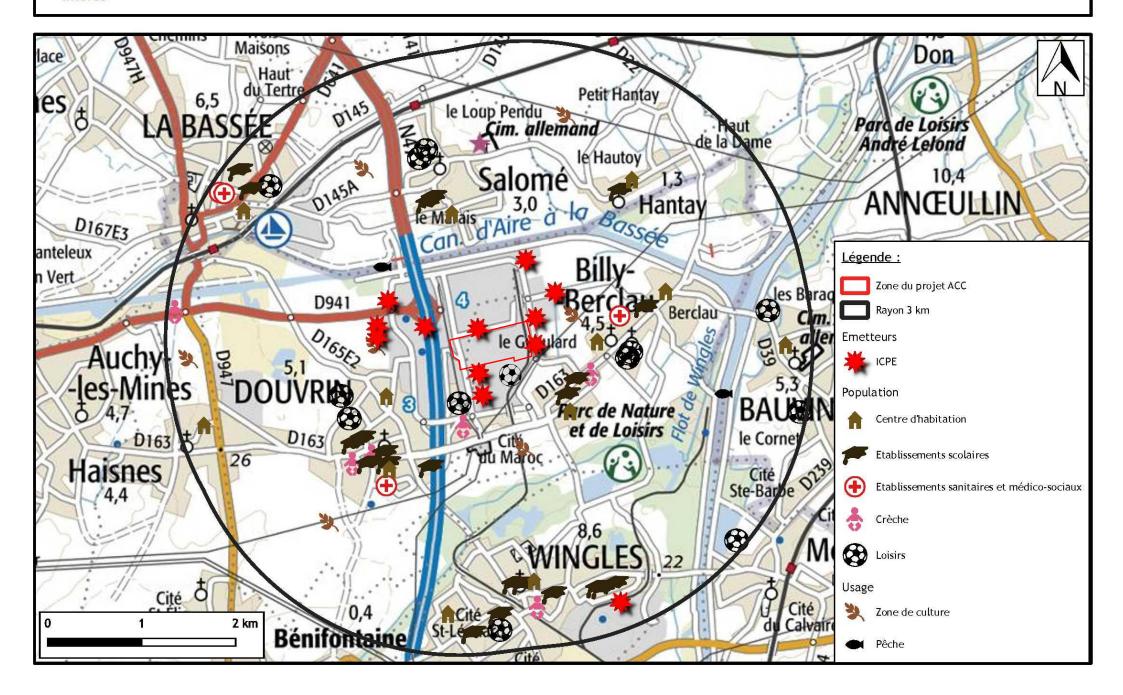

Numéro sur plan	Commune	Nom de la structure	Distance et orientation par rapport au projet
15	WINGLES	Ecole primaire Suzanne Blin	2,4 km au sud
16	WINGLES	Collège Léon Blum	2,5 km au sud
17	WINGLES	Ecole maternelle Léon Blum	2,5 km au sud
18	WINGLES	Section d'enseignement général et professionnel adapté du Collège Léon Blum	2,5 km au sud
19	WINGLES	Ecole primaire Sophie Berthelot	2,6 km au sud
20	LA BASSEE	Ecole primaire Charlemagne	2,6 km au nord-ouest
21	WINGLES	Ecole maternelle Vincent Auriol	2,7 km au sud
22	LA BASSEE	Lycée professionnel Louis-Léopold Boilly	2,8 km au nord-ouest

Tableau 202. Établissements sanitaires et sociaux et d'accueil de personnes âgées Source : http://finess.sante.gouv.fr, http://www.hopital.fr, http://annuaire.maisons-de-retraite.fr

Numéro sur plan	Commune	Nom de la structure	Distance et orientation par rapport au projet
1	BILLY-BERCLAU	EHPAD « Les Heliantines »	880 m à l'est de la zone d'étude
2	DOUVRIN	EHPAD « Les Heliantines »	1,4 km au sud-ouest de la zone d'étude
3	LA BASSEE	EHPAD Arc en ciel EPS Les Erables	2,8 km au nord-ouest
4	LA BASSEE	Centre Hospitalier LA BASSEE	2,8 km au nord-ouest

La carte ci-après localise les lieux d'exposition collective dans la zone d'étude.

Localisation des zones d'expositions collectives

VI.4.2.4 USAGES DE LA ZONE D'ETUDE

Occupation du sol

D'après les données disponibles dans la base de données Corine Land Cover, le projet ACC est situé dans une zone industrielle ou commerciale et installations publiques. La zone de projet est entourée par la zone industrielle ou commerciale et installations publiques puis par des terres arables hors périmètres d'irrigation, de tissus urbain discontinu des communes de Douvrin et Billy-Berclau notamment et de quelques forêts comme le montre la carte à la suite de ce chapitre.

Les terrains agricoles voisins sont utilisés pour différentes types de culture notamment les légumes ou fleurs.

Les premières habitations sont localisées à 90 m au sud-est, ce sont des maisons avec jardins et potentiellement des potagers. Des jardins potagers sont présents à 240 m au sud-est de la zone du projet.

Activités industrielles

Les ICPE soumises à Autorisation ou à Enregistrement recensées dans la zone d'étude (source : Géorisques) sont présentées dans le tableau ci-dessous et localisées sur la figure à la fin du chapitre.

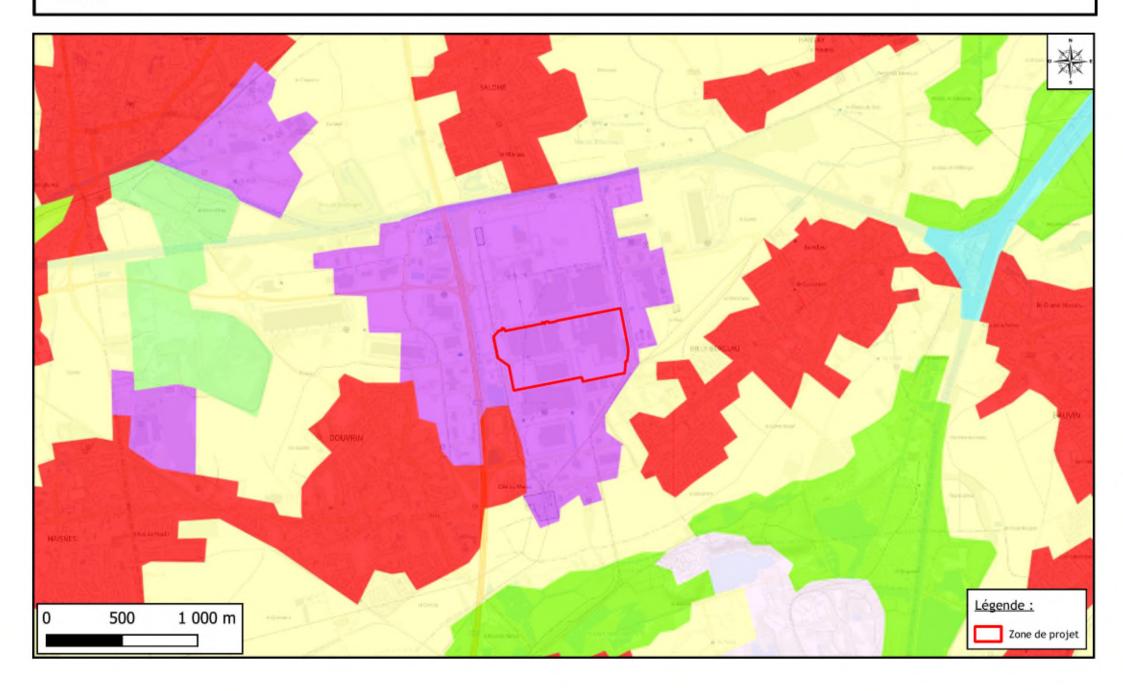
Tableau 203. Activités industrielles

Etablissement	Commune	Activité	Régime ICPE	Seveso	Distance par rapport à la zone de projet
FRANCAISE DE MECANIQUE	DOUVRIN	Construction de véhicules automobiles	А	Non Seveso	Au nord de la zone de projet
SIMASTOCK - BILS DEROO	DOUVRIN	Logistique	А	Non Seveso	Au sud de la zone de projet
MINOT RECYCLAGE TEXTILE	BILLY BERCLAU	Récupération de déchets triés	А	Non Seveso	52 m à l'est
DRAKA COMTEQ FRANCE	HAINES	Fabrication de fibres optiques	А	Seveso Seuil Bas	100 m à l'est
PROGROUP BOARD (ex PROWELL)	DOUVRIN	Fabrication de carton ondulés	А	Non Seveso	265 m à l'ouest
SOCIETE INDUSTRIELLE DE CHAUFFAGE (SIC)	BILLY BERCLAU	Fabrication de radiateurs et de chaudières pour le chauffage central	А	Non Seveso	268 m au sud
VANHEEDE FRANCE SAS	BILLY BERCLAU	Collecte des déchets non dangereux	А	Non Seveso	433 m à l'est
EARTHMINDED France	BILLY BERCLAU	Récupération de déchets triés	А	Non Seveso	648 m au nord-est
PROLOGIS FRANCE LXXII E.U.R.L.	DOUVRIN	Logistique	А	Seveso seuil bas	742 m à l'ouest
PROLOGIS FRANCE CIII EURL (DC4)	DOUVRIN	Logistique	E	Non Seveso	742 m à l'ouest
DELZEN	DOUVRIN	Emboutissage et revêtement de pièces métalliques	А	Non Seveso	745 m au nord- ouest

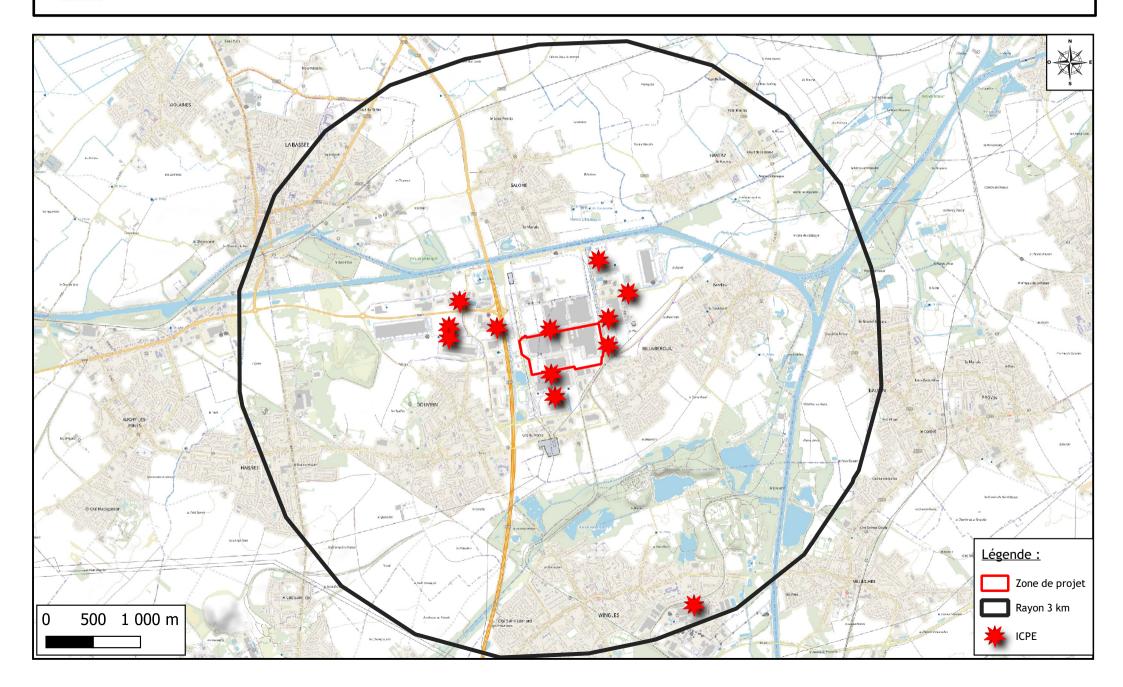
Etablissement	Commune	Activité	Régime ICPE	Seveso	Distance par rapport à la zone de projet
TERNOVEO	SALOME	Commerce de gros (commerce interentreprises) de céréales, de tabac non manufacturé, de semences et d'aliments pour le bétail	А	Non Seveso	1,4 km au nord
SIORAT	SALOME	Construction de routes et autoroutes	Е	Non Seveso	1,8 km au nord
TRANSPORTS DEPAEUW	SALOME	Logistique	Е	Non Seveso	1,9 km au nord- ouest
BOONE COMENOR METALIMPEX	LA BASSEE	Recyclage de déchets métalliques	Е	Non Seveso	2,3 km au nord- ouest
O-I FRANCE SAS (ex O-I MANUFACTURING)	WINGLES	Fabrication de verre creux	А	Non Seveso	2,7 km au sud
INEOS STYROLUTION FRANCE SAS	WINGLES	Fabrication de matières plastiques de base	А	Seveso Seuil Haut	3 km au sud-est

Parmi ces installations, quatre sont répertoriées dans le registre français des émissions polluantes (IREP) :

Tableau 204. Données IREP


Commune	Entreprise	Activité	Données concernant certains polluants émis	
			Hydroflurocarbures (HFC): 1 350 kg/an (2018)	
DOUVRIN	Française de Mécanique	Construction de moteurs	Hydrochlorofluorocarbures (HCFC): 4,78 kg/an (2018)	
		automobiles	Chlorofluorocarbures (CFC): 29,6 kg/an	
			Dioxyde de carbone (CO2) : 11 300 t/an	
BILLY-BERCLAU	DRAKA COMTEQ	Fabrication de câbles de fibres optiques	Oxydes d'azote (NOx/NO2) : 249 t/an (2018) Fluor et composés inorganiques : 18,8 t/an (2014)	
WINGLES	INEOS STYROLUTION France SAS	Fabrication de matières plastiques de base	Composés organiques volatils non méthaniques (COVNM): 106 t/an (2018) Dioxyde de carbone:	
		Fabrication de verre	15 400 t/an (2018) Oxyde d'azote : 160 t/an	
WINGLES	O-I France SAS		(2018)	
WINGLES		creux	Dioxyde de carbone : 36 000 t/an (2018)	

Usages de l'eau


Dans le domaine de l'eau, les usages sensibles recensés dans la zone d'études sont les suivants :

- alimentation en eau potable,
- navigation de plaisance,
- pêche,
- zones agricoles et piscicoles,
- puits,
- jardins potagers.

Corine Land Cover

Localisation des ICPE dans un rayon de 3 km

VI.4.3 DONNEES ET PREOCCUPATIONS SANITAIRES

L'Observatoire régional de la santé et du social (OR2S) a produit un diagnostic de santé de la région des Hauts-de-France. D'après ces données, la région des Hauts-de-France a enregistré sur la période 2006-2013 en moyenne 53 100 décès par an (27 300 hommes et 25 800 femmes). Aussi bien chez les hommes que chez les femmes, la mortalité est supérieure de 20% par rapport aux valeurs nationales. La région HDF connait la plus forte mortalité des régions de France métropolitaine.

Comme dans l'ensemble de la France métropolitaine, le cancer est la cause principale de mortalité dans la région Hauts-de-France. Entre 2011 et 2013, la mortalité par cancer est de +22% chez les hommes et de +14% chez les femmes par rapport à la moyenne nationale, cela concerne notamment le cancer colorectal, le cancer de la prostate, le cancer du sein chez la femme et le cancer des voies aéro-digestives supérieures. La surmortalité suite à une maladie cardiovasculaire est +20% dans la région par rapport à la moyenne française.

Tous les territoires de proximité de la région présentent une surmortalité par rapport aux moyennes nationales, toutefois des différences s'observent entre eux. Les territoires de proximité ayant les situations les plus préoccupantes sont situés dans le Hainaut, en Thiérache et dans ses alentours, ainsi qu'au sud de Lille (zone allant de Béthune - Bruay au Valenciennois). Les territoires de proximité ayant la mortalité par cancer la plus élevée des Hauts-de-France sont situés au niveau d'un axe reliant Béthune - Bruay au Valenciennois (surplus souvent proche des +30 %). La zone du projet est localisée dans le secteur de Béthune-Bruay.

Les indicateurs de santé de la Communauté d'Agglomération de l'Artois (Béthune, Bruay-la-Buissière) sont tirés de l'étude « Ici et Ailleurs - Nouveaux indicateurs de Santé du Nord-Pas-de-Calais », réalisée par l'Observatoire de Santé du Nord-Pas-de-Calais en 2010, qui compare les indicateurs de santé des territoires du Nord-Pas-de-Calais avec les indicateurs d'autres territoires français comparables.

L'étude fournit les indicateurs de mortalité par région administrative, par communauté d'agglomération et par région. Le tableau suivant présente les différents indices comparatifs de mortalité (ICM) prématurée pour la CA de l'Artois (moyenne France = 100).

Tableau 205. Indices comparatifs de mortalité (ICM) prématurée pour la CA de l'Artois

	Indicateurs Comparatifs de Mortalité pour la CA de l'Artois		
	Population totale avant 65 ans	Hommes avant 65 ans	Femmes avant 65 ans
Mortalité toutes causes	155,4	160,4	144,6
Mortalité prématurée évitable : - par des actions sur les systèmes de soins - par des actions sur les facteurs de risque individuel	147,4 177,7	147,5 181	147,3 166,5
Mortalité prématurée par tumeurs malignes	156,3	165,9	139,9
Mortalité prématurée par cancers des voies aéro- digestives supérieures (VADS)	217	224	171
Mortalité prématurée par cancers du larynx, de la trachée, des bronches et du poumon	141	160	73
Mortalité prématurée par cancer du côlon	187	128	270
Mortalité prématurée par cancer du sein	-	-	120
Mortalité prématurée par cancer du col de l'utérus	-	-	139
Mortalité prématurée par cancer de la prostate	-	71	-
Mortalité prématurée par maladies endocriniennes	183	195	161

	Indicateurs Comparatifs de Mortalité pour la CA de l'Artois				
	Population totale avant 65 ans	Hommes avant 65 ans	Femmes avant 65 ans		
Mortalité prématurée par accident de transport	120	116	135		
Mortalité prématurée liée à l'alcool	290	257	390		
Mortalité prématurée par abus d'alcool	217	203	278		
Mortalité prématurée par maladie chronique du foie	326	287	426		
Mortalité prématurée par suicides	155	173	106		

La CA de l'Artois connaît une surmortalité prématurée (avant 65 ans) principalement en raison des facteurs de risque individuel (consommation et abus d'alcool, maladie chronique du foie), des cancers des voies aéro-digestives supérieures (VADS) et des maladies endocriniennes.

VI.4.4 SELECTION DES SUBSTANCES D'INTERET

On distingue parmi les substances émises celles qui sont pertinentes en tant que :

- Traceurs d'émission,
- Traceurs de risque.

Les <u>traceurs d'émission</u> sont les substances susceptibles de révéler une contribution de l'installation aux concentrations mesurées dans l'environnement, et éventuellement une dégradation des milieux attribuable à ses émissions. Ils sont considérés en particulier pour l'interprétation de l'état des milieux et la surveillance environnementale.

Les <u>traceurs de risque</u> sont les substances émises susceptibles de générer des effets sanitaires chez les personnes qui y sont exposées. Ils sont considérés pour l'évaluation quantitative des risques sanitaires.

Les critères suivants sont pris en compte pour la sélection des substances d'intérêt :

- Les flux émis de la substance vers les milieux environnementaux,
- La toxicité de la substance,
- l'incidence avérée ou prévisible des émissions sur les milieux,
- le devenir dans l'environnement (mobilité, accumulation, dégradation) et le potentiel de transfert vers les matrices d'exposition,
- la sensibilité des populations et les ressources à protéger.

La toxicité de chaque substance est décrite ci-après au § VI.4.5.

Étant donné la présence de population dans la zone d'étude, le critère sensibilité des populations et ressources est considéré par défaut.

VI.4.4.1 FLUX

Le flux annuel peut également être considéré dans la méthodologie de sélection des substances en cas de hiérarchisation du risque et de la présence d'une multitude de substances.

VI.4.4.2 INCIDENCE AVEREE OU PREVISIBLE DES EMISSIONS SUR LES MILIEUX

La concentration d'une substance mesurée dans un compartiment environnemental qui fait l'objet d'une pollution significative, entraîne la sélection de la substance, quelle que soit la contribution de l'installation à cette concentration.

Les données utilisées sont issues de l'état initial du site et/ou des résultats de l'IEM présentée dans le paragraphe Erreur! Source du renvoi introuvable. de la présente évaluation des risques s anitaires.

VI.4.4.3 DEVENIR DANS L'ENVIRONNEMENT

VI.4.4.3.1 DANS L'AIR

À partir des sources canalisées, les substances émises en fonctionnement normal vont se disperser dans l'atmosphère.

Poussières: les particules en suspension peuvent réduire la visibilité et influencer le climat en absorbant et en diffusant la lumière. Les particules, en se déposant, contribuent à la dégradation physique et chimique des matériaux. Les particules se déposent rapidement sous l'effet de leurs poids. Les particules de diamètre inférieur ou égal à 10 µm, appelées PM10, peuvent rester en suspension dans l'air pendant des jours, voire des semaines. De nombreuses substances toxiques comme les métaux lourds ou les hydrocarbures se retrouvent généralement adsorbées aux particules.

<u>Métaux</u>: les composés particulaires comme les métaux sont fixés à la surface des poussières et retombent vraisemblablement au sol sans transformation particulière. En fonction de leur réactivité et de leur mobilité, ils peuvent ensuite migrer dans le sol. Ces substances contaminent donc les sols et les aliments. Ils s'accumulent dans les organismes vivants et perturbent les équilibres et mécanismes biologiques.

<u>HF</u>: après leur solubilisation dans les gouttelettes d'eau des nuages, le fluorure d'hydrogène accentue l'acidité de l'atmosphère.

<u>NOx</u>: les NOx sont rapidement oxydés en nitrates dans l'atmosphère. En se solubilisant dans les gouttes d'eau des nuages, ces composés peuvent être à l'origine de la formation des pluies acides. Les oxydes d'azote peuvent réagir avec des composés hydrocarbonés dans la troposphère et conduire à la formation d'ozone par voie photochimique. Le dioxyde d'azote se transforme dans l'atmosphère en acide nitrique (HNO₃).

 \underline{CO} : tout comme les oxydes d'azote et les Composés Organiques Volatils, le monoxyde de carbone intervient dans la formation de l'ozone troposphérique. Dans l'atmosphère, il peut également se transformer en dioxyde de carbone (CO_2) et contribuer à l'effet de serre.

<u>COV</u>: très réactifs dans l'atmosphère, les COV contribuent à la pollution photochimique. Celle-ci est caractérisée par la présence de composés issus de réactions chimiques entre les oxydes d'azote, les composés organiques volatils et le monoxyde de carbone sous l'effet du rayonnement solaire. Il est important de noter que la part de COV dégradée dans l'atmosphère n'est pas considérée au cours de cette étude. Ainsi, les COV sont supposés comme persistants dans l'atmosphère.

COV n°8 : aucune information concernant une éventuelle (bio)dégradation.

 $\underline{O_3}$: L'ozone est instable et se décompose rapidement en oxygène. La vitesse de réaction dépend de la température, de l'humidité et de la présence d'un catalyseur ou d'une surface solide.

Tous ces produits subissent en outre une dilution importante entre le point de rejet du ou des exutoires et les populations susceptibles d'être exposées.

VI.4.4.3.2 DANS LES SOLS

<u>Métaux et métalloïdes</u>: Les micropolluants métalliques présentent généralement les caractéristiques suivantes : non biodégradables, toxiques cumulatifs et toxiques lorsqu'ils sont présents en grande quantité. La présence de métaux dans le milieu est d'origine naturelle, du fait de la nature géochimique des terrains. Les activités anthropiques peuvent conduire à une augmentation de ces concentrations naturelles.

<u>Chrome</u>: Le chrome III est principalement présent dans les sols du fait des conditions anaérobies et à pH faible.

<u>Manganèse</u>: Dans les sols, il se retrouve principalement sous forme d'oxyde et dans les silicates. Sa solubilité est augmentée en milieu acide jusqu'à générer un effet toxique pour les végétaux à pH inférieur à 4,5. Toutefois, il se retrouve immobilisé dans les sols à pH 7.

<u>Nickel</u>: les principales formes de Nickel sont adsorbées à la surface d'oxydes de fer, d'aluminium ou de manganèse et dans une moindre de mesure à la surface de minéraux argileux.

<u>Vanadium</u>: Le comportement du vanadium dans les sols est lié aux propriétés physico-chimiques du sol. Il est absorbé par les plantes et peut migrer dans la chaîne alimentaire.

<u>Antimoine</u>: Il est présent dans les sols sous forme de sulfures, d'antimonides métalliques ou d'oxydes. Son comportement reste peu connu, tout en se rapprochant de celui de l'arsenic. Sous forme soluble, il est souvent complexé avec les acides humiques.

<u>Cobalt</u>: Le Cobalt est fortement et rapidement adsorbé sur les oxydes de fer et de manganèse, ainsi que les argiles et la matière organique. Sa mobilité est fonction du pH et du potentiel redox du sol.

<u>Cuivre</u>: Le comportement du cuivre dans le sol dépend de nombreux facteurs (pH du sol, potentiel redox, capacité d'échange cationique, présence et type de matières organiques, nature du sol...). Le cuivre se retrouve fortement lié aux matières organiques et aux minéraux. Par conséquent, il est peu mobile et bioaccumulable.

<u>Aluminium</u>: En fonction de l'acidité du sol, l'aluminium peut être très mobile. La présence d'argiles peut contrôler la mobilité de l'aluminium par des réactions d'adsorption ou de désorption de cet élément à la surface des particules. L'aluminium élémentaire ne se dégrade pas dans l'environnement. Dans l'état d'oxydation trivalent, il peut être complexé par des espèces riches en électrons.

<u>Etain</u>: Il fait partie des 12 métaux lourds qui font l'objet d'un suivi dans l'environnement. Il est souvent associé à des traces de plomb.

<u>Lithium</u>: Le lithium est très réactif avec l'eau et l'air. Il se ternit et s'oxyde très rapidement au contact de l'eau et de l'air.

Zinc: Le zinc migre rarement en profondeur. L'adsorption du zinc dans le sol peut se faire en milieu acide et alcalin. La matière organique du sol peut retenir le zinc sous des formes stables. Les minéraux argileux, les hydroxydes, le pH et la salinité sont les principaux facteurs qui contrôlent la solubilité du zinc. Un pH élevé (> 7) permet une meilleure adsorption du zinc. Une augmentation de la salinité du milieu entraîne la désorption du zinc dans les sédiments. La matière argileuse peut retenir le zinc assez fortement. Cette adsorption sur les surfaces argileuses peut expliquer la forte dépendance au pH de la rétention du zinc sur les sols. A pH élevés, où la concentration en composés organiques est forte, le zinc se complexe dans la matière organique.

VI.4.4.3.3 POTENTIEL DE TRANSFERT

Il est caractérisé par son facteur de bioconcentration (BCF) dans les organismes vivants aquatiques ou terrestres. Il permet de connaître le comportement de la substance dans le compartiment environnemental (plante, animal terrestre ou aquatique) susceptible d'être impacté par les rejets du site.

Toutes les substances pour lesquelles il existe une telle valeur seront considérées comme susceptibles de s'accumuler. Selon le règlement REACh (annexe XIII), une substance n'est pas considérée comme bioaccumulable si le BCF est inférieur à 2 000 ou si le log décimal de son coefficient de partage octanol/eau est inférieur à 3.

Le comportement de la substance dans l'environnement peut permettre d'orienter le choix de la sélection.

VI.4.4.3.4 PRESENTATION DES TRACEURS RETENUS

Les critères définis ci-avant ainsi que le choix résultant de leur prise en compte sont reportés dans le tableau ci-dessous.

Tableau 206. Sélection des traceurs

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Substance émise	Flux moyen (t/an)	Existence d'une VTR sans seuil O/N	Existence d'une VTR cancérigène à seuil O/N	Existence d'une VTR systémique à seuil O/N	Sélection Traceur de risque O/N (Choix O auto si colonne : 3 ou 4 ou 5 = O)	Existence d'une valeur guide pour le milieu air O/N	Concentration élevée dans l'envt (dépassement valeur guide) O/N	Sélection Traceur d'émission O/N (Choix O auto si colonne : 7 ou 8 = O et 6 = N)
Poussières (PM ₁₀)	3,806	N	N	N	N	0	N	0
Poussières (PM _{2,5})		N	N	N	N	0	N	0
Al	0,4781	N	Z	0	0	N	N	N
Li	0,0429	N	N	N	N	N	N	O (**)
Sb	0,0478	N	Z	0	0	N	N	N
Cr total (Cr III)	0,0478	N	Z	0	0	N	N	N
Со	0,0693	0	Z	0	0	N	N	N
Cu	0,4781	N	N	0	0	N	N	N
Mn	0,0956	N	N	0	0	0	N	N
Ni	0,0956	0	N	0	0	0	N	N
٧	0,0478	N	N	0	0	0	N	N
HF	4,599	N	Z	0	0	N	N	N
NOx	15,413	N	N	N	N	0	N	0
СО	17,012	N	N	N	N	0	N	0
O ₃	14,766	N	N	N	N	0	N	0
Sn	0,0478	N	N	0	0	N	N	N
Zn	0,0478	N	N	0	0	N	N	N

KALIÈS KA22.04.021

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Substance émise	Flux moyen (t/an)	Existence d'une VTR sans seuil O/N	Existence d'une VTR cancérigène à seuil O/N	Existence d'une VTR systémique à seuil O/N	Sélection Traceur de risque O/N (Choix O auto si colonne : 3 ou 4 ou 5 = O)	Existence d'une valeur guide pour le milieu air O/N	Concentration élevée dans l'envt (dépassement valeur guide) O/N	Sélection Traceur d'émission O/N (Choix O auto si colonne : 7 ou 8 = O et 6 = N)
COV annexe IVd (COV n°7)	0,286	0	N	0	0	N	N	N
COVNM colle (***) (Benzène)	2.0.40	0	N	0	0	0	N	N
COVNM colle (***) (COV n°8)	3,948	N	N	0	0	N	N	N
COVNM (Electrolytes)	83,25	N	N	N	N	N	N	O (*)
COV issus du solvant 1	1,516	N	N	0	0	N	N	0

O/N: Oui/Non

A noter que le futur site ACC n'est pas susceptible d'émettre du Chrome. Le Chrome retenu du fait de la prise en compte de la famille de métaux appartenant à l'arrêté du 02 Février 1998 sera donc pris en totalité sous sa forme trivalente (Cr III).

KALIÈS KA22.04.021

^(*) Traceur d'émission retenu pour les rejets où seules les vapeurs d'électrolytes seront émises.

^(**) Le Lithium sera retenu de manière majorante dans la suite de l'étude avec les métaux comme traceur d'émission.

^(***) La préparation de colle est un mélange de COV n°8 (dont 25 à 50 % de COV n°8 comprenant une VTR à seuil) avec des composés A pour donner un adhésif polyuréthane durcissant. Il n'est pas attendu d'émissions conséquentes de COV, ni de COV n°8 (composés non volatils, tension de vapeur inférieure à 0,01 kPa) à l'émission. Néanmoins, de manière majorante ces composés seront retenus dans la suite de l'étude. Les COV de ce point de rejet pourront être assimilés de manière majorante au benzène sans pour autant que ce soit un composé représentatif de cette activité.

On constate que la sélection ci-dessus établit un nombre élevé de traceurs de risques.

Mais lors de l'émission d'un mélange de composés chimiques dans les rejets aqueux ou/et atmosphériques, il est possible de hiérarchiser et d'effectuer une sélection d'un nombre limité de traceurs de risque et de réaliser l'évaluation prospective des risques sanitaires sur ces substances choisies. La philosophie de la démarche implique donc un choix de traceurs du risque sanitaire parmi la liste, la plus complète possible, des substances émises (liste établie précédemment) et présélectionnée comme traceur de risque. La prise en compte de ces traceurs et non de la liste complète de substance permet toutefois de conclure quant à l'acceptabilité ou non des risques.

Il est alors estimé, par voie d'exposition (ingestion et inhalation), un ratio brut pour les effets systémiques à seuil de la façon suivante :

Ratio brut = Flux de polluant / VTR à seuil.

On retiendra, par voie d'exposition, toutes les substances dont le ratio est > 1% du ratio max. La valeur de 1% est retenue conformément aux indications des guides INERIS (Démarche intégrée pour l'évaluation de l'état des milieux et des risques sanitaires - Septembre 2021 et Évaluation des risques sanitaires dans l'étude d'impact des ICPE - 2003) et des pratiques en vigueur en France.

Les substances pour lesquelles une VTR sans seuil ou une VTR cancérigène à seuil a été établie sont systématiquement retenues.

La hiérarchisation des traceurs de risque sanitaire est présentée page suivante.

Le choix des VTR retenues pour cette étude sont présentées au paragraphe VI.4.5.1.3.

Tableau 207. Hiérarchisation des risques sanitaires

			Effets systémiques (à seuil)							igènes (à seuil s seuil)		
				Inhalati	on			Ingest	ion		Inhalation	Ingestion
Substance émise	N° CAS	Flux (t/an)	VTR (mg/m³)	Flux/VTR	Ratio	Retenu ?	VTR (mg/kg/j)	Flux/VTR	Ratio	Retenu ?	Existence d'une VTR ?	Existence d'une VTR ?
Poussières (PM ₁₀)	/	4,469	/	/	/	Non	/	/	/	Non	Non	Non
Poussières (PM _{2,5})	/	4,469	/	/	/	Non	/	/	/	Non	Non	Non
Al	7429-90-5	0,4722	/	/	/	Non	0,14	3,3729	8%	Oui	Non	Non
Li	7439-93-2	0,0341	/	/	/	Non	/	/	/	Non	Non	Non
Sb	7440-36-0	0,0472	0,003	16	1%	Oui	0,006	7,8667	18%	Oui	Non	Non
Cr total (Cr III)	7440-47-3 16065-83-1 1308-38-9	0,0472	0,002	24	1%	Oui	0,3	0,1573	0,4%	Non	Non	Non
Co	7440-48-4	0,0649	0,0001	649	33%	Oui	0,0015	43,2667	100%	Oui	Oui	Non
Cu	7440-50-8 7440-50-9	0,4722	0,001	472	24%	Oui	0,15	3,148	7 %	Oui	Non	Non
Mn	7439-96-5	0,0944	0,0003	315	16%	Oui	0,055	1,7164	4%	Oui	Non	Non
Ni	7440-02-0	0,0944	2,30E-04	410	21%	Oui	0,0028	33,7143	78%	Oui	Oui	Non
V	7440-62-2 1314-62-1	0,0472	0,001	47	2%	Oui	0,009	5,2444	12%	Oui	Non	Non
HF	7664-39-3	4,599	0,014	329	17%	Oui	/	/	/	Non	Non	Non
NOx	10102-43-9 10102-44-0	15,413	/	/	/	Non	/	/	/	Non	Non	Non
СО	630-08-0	17,012	/	/	/	Non	/	/	/	Non	Non	Non
O ₃	10028-15-6	14,766	/	/	/	Non	/	/	/	Non	Non	Non
Sn	7440-31-5	0,0472	/	/	/	Non	0,2	0,236	0,5%	Non	Non	Non
Zn	7440-66-6	0,0472	/	/	/	Non	0,3	0,1573	0,4%	Non	Non	Non

KALIÈS KA22.04.021

				Effets systémiques (à seuil)						Effets cancérigènes (à seuil ou sans seuil)		
				Inhalati	on			Ingest	ion		Inhalation	Ingestion
Substance émise	N° CAS	Flux (t/an)	VTR (mg/m³)	Flux/VTR	Ratio	Retenu ?	VTR (mg/kg/j)	Flux/VTR	Ratio	Retenu ?	Existence d'une VTR ?	Existence d'une VTR ?
COV annexe IVd (COV n°7)	Confidentiel	0,286	0,002	143	7%	Oui	/	/	/	Non	Oui	Non retenu
COVNM colle (benzène, Eq COV) (*)	71-43-2	1,975	0,01	197,5	10%	Oui	/	/	/	Non	Oui	Non retenu
COVNM colle (COV n°8) (*)	Confidentiel	1,975	0,001	1975	100%	Oui	/	/	/	Non	Non	Non
COVNM (Electrolytes)	/	83,25	/	/	/	Non	/	/	/	Non	Non	Non
COV issus du solvant 1	Confidentiel	1,516	0,3	5,0533	0,3%	Non	/	/	/	Non	Non	Non

^(*) Pour rappel, la préparation de colle est un mélange de COV n°8 (dont 25 à 50 % de COV n°8 comprenant une VTR à seuil) avec des composés A pour donner un adhésif polyuréthane durcissant. Il n'est pas attendu d'émissions conséquentes de COV, ni de COV n°8 (composés non volatils, tension de vapeur inférieure à 0,01 kPa) à l'émission. Néanmoins, de manière majorante ces composés seront retenus dans la suite de l'étude. Les COV de ce point de rejet pourront être assimilés de manière majorante au benzène (VTR sans seuil pénalisante) dans la suite de l'étude sans pour autant que ce soit un composé représentatif de cette activité.

Seuls les composés particulaires et bioaccumulables sont retenus pour le risque par ingestion.

La mise en œuvre de cette méthodologie permet de retenir les 13 substances présentant le risque le plus élevé pour la santé humaine parmi l'ensemble des substances rejetées. Ces substances sont les suivantes :

Tableau 208. Traceurs de risques retenus

		Voie d'ex	position
Substance	N° CAS	Inhalation	Ingestion de sols, végétaux et animaux terrestres
Al	7429-90-5	-	X
Sb	7440-36-0	X	Х
Cr III	7440-47-3 16065-83-1 1308-38-9	Х	-
Со	18540-29-9	Х	Х
Cu	7440-48-4	Х	Х
Mn	7440-50-8	Х	Х
Ni	7440-02-0	Х	Х
V	7440-62-2	Х	Х
HF	7664-39-3	Х	-
COV annexe IVd (COV n°7)	Confidentiel	Х	-
COVNM colle (benzène, Eq COV) (*)	71-43-2	Х	-
COVNM colle (benzène, Eq COV)	71-43-2	Х	-
COVNM colle (COV n°8)	Confidentiel	Х	-

La famille complète de métaux auquel une VLE de 5 mg/m³ est fixée par l'arrêté du 02 février 1998 sera conservée (suivi du Sn et Zn).

En plus de ces traceurs de risque sanitaire, les traceurs d'émission suivants ont été retenus :

Tableau 209. Traceurs d'émission retenus

Substance	N° CAS	Milieu d'exposition		
Substance	N CAS	Air		
Poussières (PM ₁₀)	/	X		
Poussières (PM _{2,5})	/	X		
HF	7664-39-3	X		
NOx	10102-43-9 10102-44-0	X		
CO	630-08-0	X		
O ₃	10028-15-6	Х		
Li	7439-93-2	Х		

Substance	N° CAS	Milieu d'exposition
Substance	N CAS	Air
COVNM (electrolyte)	/	Х
COV issus du solvant 1	872-50-4	Х

Le COV issus du solvant 1 étant le COV majoritaire de la préparation des encres (cathodes), il sera conservé dans la suite de l'étude pour le risque sanitaire.

Malgré l'absence de VTR, le lithium sera conservé comme traceur d'émission dans l'air et dans les sols comme les autres métaux.

VI.4.5 IDENTIFICATION DES DANGERS ET RELATIONS DOSE-REPONSE

VI.4.5.1 TOXICITE RELATIVE A LA SUBSTANCE

VI.4.5.1.1 DESCRIPTION DES PROPRIETES TOXICOLOGIQUES DES SUBSTANCES

Poussières : dans les poussières totales en suspension se distinguent :

- les poussières ou particules sédimentables qui ont un diamètre important (entre 10 et 100 μm),
- les poussières fines, parfois appelées aussi alvéolaires car elles pénètrent dans les enveloppes pulmonaires, et de diamètre inférieur à 10 μm. On fait référence à 2 classes de particules fines :
 - o les PM₁₀ (diamètres inférieurs à 10 μm),
 - o les PM_{2,5} (ou très fines particules dont les diamètres sont inférieurs à 2,5 μm).

Selon leur taille, elles pénètrent plus ou moins profondément dans le système respiratoire. Elles sont ainsi susceptibles de pénétrer dans les voies pulmonaires jusqu'aux alvéoles, de s'y déposer et d'y rester durablement en créant une surcharge pulmonaire néfaste pour l'organisme.

<u>Antimoine</u>: l'exposition professionnelle par inhalation à des composés de l'antimoine a entraîné des effets respiratoires incluant bronchite chronique, emphysème chronique... Dans des études à long terme, les animaux qui ont respiré les niveaux très bas d'antimoine ont subi une irritation de l'œil, des dommages aux poumons et des problèmes de cœur.

<u>Cobalt</u>: les intoxications publiées chez l'homme concernent principalement des expositions par inhalation. Des manifestations respiratoires sont en premier lieu rapportées, mais également des effets cardiaques, des effets sur la thyroïde et des effets cutanés (dermite allergique).

<u>Cuivre</u>: par inhalation, une irritation des voies aériennes supérieures et des troubles gastro-intestinaux sont reportés, tandis que par voie orale, notamment par intoxication via l'eau de boisson, des troubles gastro-intestinaux, rénaux ou hépatiques sont recensés.

<u>Chrome</u>: le tractus respiratoire est l'organe cible des effets lors de l'exposition par inhalation des dérivés du chrome III et du chrome VI. Des atteintes gastro-intestinales (inflammation du tube digestif puis nécrose) sont mises en avant pour une exposition au chrome VI par ingestion.

<u>Manganèse</u>: les poussières ou les fumées d'oxydes de manganèse provoquent une irritation intense. Les fumées peuvent également entraîner l'apparition de frissons, de fièvre, de sudation, de nausées et de toux. Aucune donnée n'est disponible quant à la toxicité par ingestion chez l'homme.

<u>Nickel</u>: le nickel est connu depuis longtemps comme l'allergène le plus courant pour la peau. Des effets chroniques respiratoires du nickel ont également été mis en avant : certaines études indiquent un excès de bronchites chroniques ou de perturbations des fonctions respiratoires, bien que les salariés fussent toujours exposés à plusieurs polluants.

<u>Vanadium</u>: le pentoxyde de vanadium provoque des irritations de la peau et des muqueuses. Par ingestion, il est un poison pour le sang, le foie et les reins.

<u>Oxydes d'azote</u>: les études ont montré chez l'enfant un allongement de la durée des symptômes respiratoires associé à l'augmentation des moyennes annuelles d'exposition au dioxyde d'azote, une augmentation des traitements en milieu hospitalier pour des pathologies respiratoires et une augmentation des traitements en milieu hospitalier pour des pathologies de l'appareil respiratoire inférieur lors d'expositions vie entière.

<u>Monoxyde de carbone</u>: il se fixe sur l'hémoglobine du sang, avec une affinité 200 fois supérieure à celle de l'oxygène. Les organes les plus sensibles à cette diminution de l'oxygénation sont le cerveau et le cœur. L'inhalation de CO entraîne des maux de tête et des vertiges. Nausées et vomissements apparaissent à forte concentration. En cas d'exposition prolongée à des niveaux élevés en milieu confiné, ce polluant peut avoir un effet asphyxiant mortel.

En France, le CO provoque chaque année 300 à 400 décès, en milieux clos, et de plus de 5 000 hospitalisations.

<u>Fluorure d'hydrogène</u>: une exposition prolongée au fluorure d'hydrogène provoque essentiellement une irritation accompagnée de lésions hépatiques, rénales, osseuses et dentaires.

<u>COV</u> (acroléine, benzène, formaldéhyde): leurs effets, sont très variables selon la nature du polluant envisagé. Ils vont d'une certaine gêne olfactive à des effets mutagènes et cancérigènes (benzène). Ils peuvent provoquer également des irritations diverses et une diminution de la capacité respiratoire.

<u>Étain</u>: l'étain est un irritant pour les yeux et les voies respiratoires (nez, gorge). Par ingestion, il est à l'origine de nausées, vomissements, diarrhées, crampes stomacales, fatigue et céphalées. À noter également une irritation de la peau par contact cutané.

<u>Zinc</u>: les composés du zinc, en exposition prolongée, induisent par voie orale une irritation gastro-intestinale et une anémie, et par inhalation, une irritation pulmonaire.

COV n°8 : l'exposition aiguë provoque des lésions des muqueuses respiratoires qui peuvent être graves. L'irritation de la peau et des yeux peut également être particulièrement importante. Des signes neurologiques non spécifiques sont rapportés. L'exposition répétée se traduit par des manifestations allergiques : eczéma, asthme, pneumopathie d'hypersensibilité, conjonctivites.

 $\underline{\text{Ozone O}_3:}$ l'ozone provoque des lésions irritantes des muqueuses respiratoires (bronchopathies, emphysème, fibrose) ainsi que des muqueuses oculaires. Quelques effets rénaux ou neurologiques rares ont été reportés.

<u>Aluminium</u>: l'exposition chronique à l'aluminium peut être responsable d'effets respiratoires (fibrose pulmonaire lors d'expositions massives, asthme et altérations chroniques de la fonction ventilatoire) et neurologiques (altération des fonctions psychomotrices).

<u>Lithium</u>: l'ingestion de sels de lithium peut engendrer des nausées, vomissements, une perte d'appétit, une diarrhée, des tremblements, une faiblesse musculaire, des troubles de l'élocution et de la vision, une polyurie, polydipsie, une atteinte rénale et des troubles cardiaques. Il peut également être responsable d'irritation et de corrosion de la peau, des eaux, des voies respiratoires et voies digestives.

VI.4.5.1.2 CLASSEMENTS DES SUBSTANCES

L'évaluation du risque cancérogène est déterminée sur la base des classifications de l'US-EPA, du CIRC et de l'Union Européenne, présentées dans le tableau ci-après.

Organisme	Classe	Intitulé			
	А	Substance cancérogène pour l'homme			
	B1 / B2	Substance probablement cancérogène pour l'homme			
US-EPA	С	Substance cancérogène possible pour l'homme			
	D	Substance non classifiable quant à sa cancérogénicité pour l'homme			
	Е	Substance non cancérogène pour l'homme			
	1	Agent ou mélange cancérogène pour l'homme			
	2A	Agent ou mélange probablement cancérogène pour l'homme			
CIRC / OMS	2B	Agent ou mélange pouvant être cancérogène pour l'homme			
	3	Agent ou mélange ne pouvant être classé pour sa cancérogénicité pour l'homme			
	4	Agent ou mélange probablement pas cancérogène pour l'homme			
	Catégorie 1A	Substance dont le potentiel cancérogène pour l'homme est avéré, la classification dans cette catégorie s'appuyant largement sur des données humaines			
Union Européenne	Catégorie 1B	Substance dont le potentiel cancérogène pour l'homme est supposé, la classification dans cette catégorie s'appuyant largement sur des données animales			
	Catégorie 2	Substance suspectée d'être cancérogène pour l'homme			

Tableau 210. Classification du risque cancérogène

Les substances classées cancérogènes sont retenues prioritairement comme traceurs de risque, du fait de la gravité de leurs effets. Toutefois les substances sans VTR ne pouvant pas faire l'objet d'une quantification des risques sanitaires seront retenues comme substances d'intérêt en tant que traceurs d'émission.

Lorsque le potentiel cancérogène d'une substance est avéré, une Valeur Toxicologique de Référence sans seuil est établie pour les effets cancérogènes mutagènes ou génotoxiques. Pour les effets cancérigènes non génotoxiques, une VTR à seuil doit être privilégiée, lorsqu'elle existe, à une éventuelle VTR sans seuil.

VI.4.5.1.3 VALEURS TOXICOLOGIQUES DE REFERENCE

Définition des valeurs toxicologiques de référence

L'appellation VTR regroupe toutes les relations quantitatives entre une dose d'exposition et la possibilité d'apparition d'un effet (effet à seuil) ou d'une probabilité d'effet (effet sans seuil).

Pour les effets à seuil, une VTR désigne la dose ou la concentration en deçà de laquelle la survenue d'un effet n'est pas attendue. Elle s'exprime dans la même unité que l'exposition. Par exemple mg/m³ pour l'inhalation, mg/(kg.j) pour l'ingestion.

Pour les effets sans seuil, une VTR désigne la probabilité supplémentaire de survenue d'un effet (le plus souvent cancérogène génotoxique) pour une unité d'exposition. Elle est aussi appelée excès de risque unitaire (ERU) et s'exprime dans l'unité inverse de l'exposition. Par exemple (mg/m³)-¹ pour l'inhalation, (mg/(kg.j))-¹ pour l'ingestion.

Pour chaque substance, il peut exister plusieurs VTR selon :

- l'existence, ou non, d'un seuil pour l'effet considéré ;
- la voie d'exposition : inhalation, ingestion ou contact cutané (à ce jour, il existe très peu de VTR pour la voie cutanée) ;
- la durée d'exposition : aiguë (quelques heures à quelques jours), subchronique (quelques jours à quelques mois) ou chronique (supérieure ou égale à 1 an).

Les VTR sont construites pour couvrir l'ensemble de la population, y compris les personnes sensibles (les enfants par exemple).

Recherche des valeurs toxicologiques de référence

La toxicité relative à une substance est validée par une Valeur Toxicologique de Référence issue de la littérature (ANSES, US-EPA, ATSDR, OMS/IPCS, Health Canada, RIVM, OEHHA et EFSA), déterminée pour un effet à seuil ou sans seuil, et pour une voie d'exposition.

À noter que les VTR à seuil peuvent être représentatives d'effets systémiques ou de précurseurs d'effets cancérigènes.

Toute substance ne présentant pas de VTR ne sera pas retenue en tant que traceur de risque.

Conformément à la note d'information n° DGS/EA1/DGPR/2014/307 du 31 octobre 2014 relative aux modalités de sélection des substances chimiques et de choix des valeurs toxicologiques de référence pour mener les évaluations des risques sanitaires dans le cadre des études d'impact et de la gestion des sites et sols pollués, le choix de la Valeur Toxicologique de Référence s'effectuera suivant le logigramme ci-après.

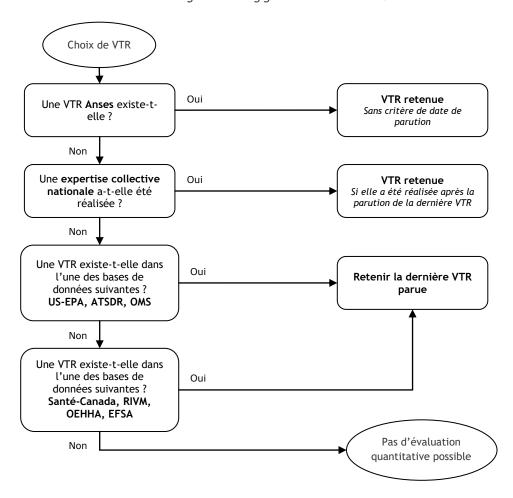


Figure 124. Logigramme de choix des VTR

Les valeurs limites d'exposition professionnelle (VLEP) ou les valeurs guides de qualité des milieux ne constituent pas à proprement parler des valeurs toxicologiques de référence ; elles peuvent toutefois servir d'élément de comparaison.

L'annexe 14 présente, pour chaque substance retenue, l'ensemble des Valeurs Toxicologiques de Référence publiées par les organismes de notoriété internationale pour des effets à seuil et sans seuil et par voie d'exposition. Les VTR retenues dans le cadre de cette étude y sont indiquées en gras et sont synthétisées dans le tableau suivant.

Le site ACC utilisera deux types d'électrolytes (Electrolyte 1 et Electrolyte 2) présentant plusieurs composants. Deux composants majorants retrouvés dans les électrolytes seront retenus. Les autres composants potentiels ne présentent pas de VTR à ce jour, ils ne sont pas listés dans le tableau cidessous

Nota : pour les effets cancérigènes non génotoxiques, c'est la VTR à seuil qui sera privilégiée, conformément à la note du 31 octobre 2014.

Tableau 211. Valeurs Toxicologiques de Référence retenues

Substance	Voie d'exposition	Organes cibl	les	VTR retenue (ou valeur guide de l'OMS à défaut)
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
Poudre cathode 1		Effets cancérigènes sans seuil :	/	Pas de VTR
Poudre Cathode 1		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
	3****	Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
Davidua aathada 2	geesieri	Effets cancérigènes sans seuil :	/	Pas de VTR
Poudre cathode 3		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
	matacion	Effets cancérigènes sans seuil :	/	Pas de VTR
	Inhalation	Effets systémiques à seuil :	/	Pas de VTR
		Effets cancérigènes à seuil :	/	Pas de VTR
Davidus anthoda 2		Effets cancérigènes sans seuil :	/	Pas de VTR
Poudre cathode 2	Ingestion	Effets systémiques à seuil :	/	Pas de VTR
		Effets cancérigènes à seuil :	/	Pas de VTR
	500	Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
Davidas sathada 4		Effets cancérigènes sans seuil :	/	Pas de VTR
Poudre cathode 4		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
	3****	Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
Poudre cathode 5		Effets systémiques à seuil :	/	Pas de VTR
		Effets cancérigènes à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes sans seuil :	/	Pas de VTR

Substance	Voie d'exposition	Organes cib	oles	VTR retenue (ou valeur guide de l'OMS à défaut)
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
Poudre anode 3		Effets cancérigènes sans seuil :	/	Pas de VTR
Foudie allode 3		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
	J	Effets cancérigènes sans seuil :	1	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
Poudre anode 4		Effets cancérigènes sans seuil :	1	Pas de VTR
roudle allode 4		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
	3	Effets cancérigènes sans seuil :	/	Pas de VTR
	Inhalation	Effets systémiques à seuil :	/	Pas de VTR
		Effets cancérigènes à seuil :	/	Pas de VTR
Poudre anode 1		Effets cancérigènes sans seuil :	1	Pas de VTR
Poddre anode i	Ingestion	Effets systémiques à seuil :	/	Pas de VTR
		Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
Poudre anode 2		Effets cancérigènes sans seuil :	/	Pas de VTR
Foudie anode 2		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	Système respiratoire	VTR = 0,00023 mg/m ³ (TCEQ, 2011)
Nickel et composés	Inhalation	Effets cancérigènes à seuil :	/	/
solubles (7440-02-0 ; 7718-54-9 ;		Effets cancérigènes sans seuil :	Cancer des poumons	ERUi = 0,00017 (μg/m³) ⁻¹ (TCEQ, 2011)
7786-81-4 ; 13138-45-9 ;		Effets systémiques à seuil :	Effets sur la reproduction	TDI = 0,0028 mg/kg/j (EFSA, 2015)
373-02-4) Voir Nota	Ingestion	Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	/

Substance	Voie d'exposition	Organes cib	bles	VTR retenue (ou valeur guide de l'OMS à défaut)
		Effets systémiques à seuil :	Système respiratoire	CT = 0,0001 mg/m ³ (OMS CICAD, 2006)
	Inhalation	Effets cancérigènes à seuil :	/	/
Cobalt		Effets cancérigènes sans seuil :	/	ERUi = 0,0077 (μg/ m³) ⁻¹ (ΟΕΗΗΑ, 2020)
(7440-48-4)		Effets systémiques à seuil :	Cœur	VTR = 0,0015 mg/kg/j (AFSSA, 2010)
	Ingestion	Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	/
		Effets systémiques à seuil :	Irritation nasal et effet sur les testicules	CT = 0,3 mg/m³ (OMS CICAD, 2001)
COV issus du solvant 1	Inhalation	Effets cancérigènes à seuil :	/	1
		Effets cancérigènes sans seuil :	/	1
	Inhalation	Effets systémiques à seuil :	/	Pas de VTR
COV issus du solvant 2		Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
Acide fluorhydrique	Inhalation	Effets systémiques à seuil :	Système osseux	REL = 0,014 mg/m ³ (OEHHA, 2003)
(7664-39-3)		Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	1
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
Lithium Nickel Cobalt Aluminium Oxyde		Effets cancérigènes sans seuil :	/	Pas de VTR
(177997-13-6)		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
	J	Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
Aluminium (7429-90-5)		Effets systémiques à seuil :	Système Nerveux Central, Effets neurologiques	PTWI = 0,14 mg/kg/j (OMS JEFCA, 2006)
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR

Substance	Voie d'exposition	Organes cibles		VTR retenue (ou valeur guide de l'OMS à défaut)
		Effets systémiques à seuil :	Système nerveux	MRLch = 0,0003 mg/m ³ (ATSDR, 2012)
	Inhalation	Effets cancérigènes à seuil :	/	/
Manganèse		Effets cancérigènes sans seuil :	/	/
(7439-96-5)		Effets systémiques à seuil :	Effets neuro- développementaux	DJA = 0,055 mg/kg/j (INSPQ, 2017)
	Ingestion	Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	1
		Effets systémiques à seuil :	/	Pas de VTR
Liquide anode 1	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
·		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	Effet sur le système de reproduction	RfC = 0,002 mg/m ³ (US EPA, 2002)
COV n°7	Inhalation	Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	Leucémie	ERUi = 0,00003 (µg/m³)-1 (US EPA, 2002)
	Inhalation	Effets systémiques à seuil :	/	Pas de VTR
COV n°1		Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
COV n°2	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
COV n°3	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
COV n°4	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
COV n°5	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
		Effets systémiques à seuil :	/	Pas de VTR
COV n°6	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
	matacion	Effets cancérigènes sans seuil :	/	Pas de VTR

Substance	Voie d'exposition	Organes cib	les	VTR retenue (ou valeur guide de l'OMS à défaut)
Benzène		Effets systémiques à seuil :	Effets sur le système immunitaire	VTR = 0,01 mg/m ³ (ANSES, 2008)
(71-43-2)	Inhalation	Effets cancérigènes à seuil :	/	/
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Effets cancérigènes sans seuil :	Leucémie	ERUi = 0,000026 (μg/m³) ⁻¹ (ANSES, 2014)
Poussières		Effets systémiques à seuil :	Effets sur le système respiratoire	VG = 0,015 mg/m ³ (OMS, 2021)
PM10	Inhalation	Effets cancérigènes à seuil :	/	1
(/)		Effets cancérigènes sans seuil :	/	/
Poussières		Effets systémiques à seuil :	Effets sur le système respiratoire	VG = 0,005 mg/m ³ (OMS, 2021)
PM2,5	Inhalation	Effets cancérigènes à seuil :	/	/
(/)		Effets cancérigènes sans seuil :	/	/
	Inhalation	Effets systémiques à seuil :	Effets sur le système respiratoire	MRL = 0,0003 mg/m ³ (ATSDR, 2019)
		Effets cancérigènes à seuil :	/	/
Antimoine		Effets cancérigènes sans seuil :	/	/
(7440-36-0)		Effets systémiques à seuil :	Poids	TDI = 0,006 mg/kg/j (OMS, 2003)
	Ingestion	Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	/
Chrome III (composés insolubles		Effets systémiques à seuil :	Poumons	VTR = 0,002 mg/m ³ (INERIS, 2017)
(Chrome métal	Inhalation	Effets cancérigènes à seuil :	/	/
(7440-47-3) Sels insolubles		Effets cancérigènes sans seuil :	/	/
(16065-83-1) Oxyde de chrome		Effets systémiques à seuil :	/	VTR = 0,3 mg/kg/j (EFSA, 2014)
(1308-38-9)	Ingestion	Effets cancérigènes à seuil :	/	/
Autres composés insolubles)		Effets cancérigènes sans seuil :	/	/
Manage de la la		Effets systémiques à seuil :	/	Valeur réglementaire = 4 mg/m³ (OMS, 2021)
Monoxyde de carbone (630-08-0)	Inhalation	Effets cancérigènes à seuil :	/	/
(355 55 6)		Effets cancérigènes sans seuil :	/	/

Substance	Voie d'exposition	Organes cib	VTR retenue (ou valeur guide de l'OMS à défaut)		
Cuivre (7440-50-8	Inhalation	Effets systémiques à seuil :	Poumons et système immunitaire	TCA = 0,001 mg/m ³ (RIVM, 2001)	
		Effets cancérigènes à seuil :	/	/	
		Effets cancérigènes sans seuil :	1	1	
7440-50-9)		Effets systémiques à seuil :	Non précisé	TDI = 0,15 mg/kg/j (EFSA, 2018)	
	Ingestion	Effets cancérigènes à seuil :	/	/	
		Effets cancérigènes sans seuil :	/	1	
		Effets systémiques à seuil :	/	/	
	Inhalation	Effets cancérigènes à seuil :	/	/	
Etain (7440-31-5)	matation	Effets cancérigènes sans seuil :	1	/	
	Ingestion	Effets systémiques à seuil :	Non précisé	TDI = 0,2 mg/kg/j (RIVM, 2009)	
		Effets cancérigènes à seuil :	/	/	
		Effets cancérigènes sans seuil :	/	1	
Vanadium et ses composés (7440-62-2 1314-62-1)	Inhalation	Effets systémiques à seuil :	Système respiratoire	MRL = 0,0001 mg/m ³ (ATSDR, 2012)	
		Effets cancérigènes à seuil :	/	/	
		Effets cancérigènes sans seuil :	/	/	
	Ingestion	Effets systémiques à seuil :	Diminution cystine dans cheveux	RfD = 0,009 mg/kg/j (US-EPA, 1996)	
		Effets cancérigènes à seuil :	/	/	
		Effets cancérigènes sans seuil :	1	1	
	Inhalation	Effets systémiques à seuil :	/	/	
		Effets cancérigènes à seuil :	/	/	
Zinc élément (7440-66-6)		Effets cancérigènes sans seuil :	/	/	
	Ingestion	Effets systémiques à seuil :	Effets sanguins : diminution de l'hématocrite, de la ferritine sanguine et de l'activité de la superoxydase dismutase érythrocytaire)	RfD = 0,3 mg/kg/j (US EPA, 2005)	
	Ingestion	Effets cancérigènes à seuil :	/	/	
		Effets cancérigènes sans seuil :	/	/	

Substance	Voie d'exposition	Organes cibles		VTR retenue (ou valeur guide de l'OMS à défaut)
Lithium		Effets systémiques à seuil :	/	Pas de VTR
	Inhalation	Effets cancérigènes à seuil :	/	Pas de VTR
	milatation	Effets cancérigènes sans seuil :	/	Pas de VTR
(7439-93-2)		Effets systémiques à seuil :	/	Pas de VTR
	Ingestion	Effets cancérigènes à seuil :	/	Pas de VTR
		Effets cancérigènes sans seuil :	/	Pas de VTR
Oxydes d'azote		Effets systémiques à seuil :	Système respiratoire	Valeur réglementaire = 1,00.10 ⁻² mg/m³ (OMS, 2021)
(10102-43-9	Inhalation	Effets cancérigènes à seuil :	/	1
10102-44-0)		Effets cancérigènes sans seuil :	/	/
Ozone	Inhalation	Effets systémiques à seuil :	/	Valeur guide = 100 mg/m³ moyenne sur 8 h (OMS, 2021)
		Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	/
	Inhalation	Effets systémiques à seuil :	/	1
COV n° 10		Effets cancérigènes à seuil :	/	1
		Effets cancérigènes sans seuil :	/	/
COV n°8	Inhalation	Effets systémiques à seuil :	Système respiratoire	MRL = 1,00.10 ⁻³ mg/m ³ (ATSDR, 2018)
		Effets cancérigènes à seuil :	/	/
		Effets cancérigènes sans seuil :	/	/
	Inhalation	Effets systémiques à seuil :	/	1
COV n°9		Effets cancérigènes à seuil :	/	1
55, ,		Effets cancérigènes sans seuil :	/	/

Les poussières émises au niveau de la préparation des encres sont principalement liées aux composés des poudres utilisées :

• Poudre dans la préparation de l'anode :

o Poudre anode 1: aucune VTR,

o Poudre anode 2: aucune VTR,

Poudre anode 3: aucune VTR,

o Poudre anode 4 dans la composition du liquide anode 1: aucune VTR.

• Poudre dans la préparation de la cathode :

- Poudre cathode 1 : aucune VTR,
- o Poudre cathode 2: aucune VTR,
- o Poudre cathode 3: aucune VTR,
- Poudre cathode 4: aucune VTR,
- Poudre cathode 5 : aucune VTR.

Ces poudres sont mélangées à des solvants : l'eau pour l'anode et le solvant 1 et le solvant 2 pour la cathode. Le solvant 1, COV ayant une VTR à seuil, sera considéré dans la suite de l'étude.

Ainsi, du fait du process et de l'usage de ces composés, il sera retenu :

- Les poussières (PM10, PM2,5) pour leurs valeurs guides,
- Les métaux dont notamment Cobalt, lithium, Manganèse, Nickel et les matériaux supports sur lesquels est enduit l'encre : Aluminium et Cuivre,
- Le COV issus du solvant 1 (COV avec une mention de danger H360D),
- Les COVNM du fait des composés et COV potentiels de l'électrolytes :
 - COV n°1: aucune VTR,
 - COV n°2: aucune VTR,
 - COV n°3: aucune VTR,
 - COV n°4: aucune VTR,
 - COV n°5: aucune VTR,
 - COV n°6: aucune VTR,
- Le fluorure d'hydrogène (HF) du fait de l'usage de la poudre cathode 3 et des composés de l'électrolyte,
- Un COV de l'annexe IVd : COV n°7 du fait de l'usage du liquide anode 1 et le Monoxyde de carbone (CO) pour l'étape de formation,
- L'ozone pour le traitement à l'ozone à l'étape Enduction,
- Les COVNM pour l'usage de colle à l'étape d'assemblage en module,
- Les NOx et le CO pour les installations de combustion de plus de 1 MWh.

Les COVNM éventuels de la colle utilisés pour l'assemblage en module correspondent au résultat chimique d'un mélange à l'état pâteux/solide à base de 25 à 50 % de « COV n°8 » à température ambiante avec des composés A avant la mise en application. Les émissions peuvent être considérées comme négligeables. Le COV n°8 présente une pression de vapeur < 0,005 Pa à 20°C. Il n'est donc pas considéré comme un COV. Il peut entrer dans une surveillance au poste de travail pour des envols accidentels d'aérosols lors de sa mise en œuvre (système d'aspiration et neutralisation machines). De manière majorante, même si le flux est faible en terme de COV (inférieur à 2 kg/h), une VLE de 110 mg/m³ sera considérée dans la suite de l'étude. Il pourra être pris en compte 50% de COV n°8 pour sa VTR à seuil et du benzène pour sa VTR sans seuil pénalisante en l'absence d'identification de COV volatils produits pour la suite de l'étude.

Il ne sera pas retenu du fait des températures du process d'autres COVNM en quantités significatives dans les rejets canalisés du site.

Remarques:

- en l'absence de Valeurs Toxicologiques de Référence reconnues, les valeurs Guides définies par l'OMS pour les Oxydes d'azote, le Monoxyde de carbone et les Poussières seront retenues prioritairement comme valeur de comparaison.
- les VTR sous forme d'avant-projet (draft) ou de document provisoire ne sont pas retenues pour la quantification des risques.
- les VTR sélectionnées ou élaborées par l'ANSES (quel que soit l'organisme les ayant élaborées) ont été considérées, puis dans un second temps les VTR retenues par l'INERIS (en tant qu'expertise nationale collective) à condition qu'elles soient postérieures à la publication des VTR proposées par les autres organismes cités dans la note N°DGS/EA1/DGPR/2014/307 du 31 octobre 2014 (US-EPA, OMS, OEHHA, etc.) ont été considérées.
- La sélection des VTR a été réalisée conformément à la note d'information DGS/EA1/DGPR/2014/307 du 31/10/2014, à savoir que dans tous les cas, en première intention, la VTR retenue est celle sélectionnée ou élaborée par l'ANSES (quel que soit son année). Si l'ANSES n'a pas sélectionné ou élaboré de valeurs, alors en deuxième intention la VTR à retenir est celle proposée par une autre expertise nationale collective (en l'occurrence l'INERIS), à condition qu'elle soit postérieure à la publication des VTR proposées par les autres organismes cités dans la note (US-EPA, OMS, OEHHA....)

Dans les autres situations il a été retenu par ordre de priorité, la VTR la plus récente proposées par

- o l'US-EPA, l'ATSDR, l'OMS
- Santé Canada, RIVM, OEHHA, EFSA.
- Les formes de métaux inorganiques et particulaires ont été sélectionnées en priorité.
- Seuls les composés particulaires et bioaccumulables sont retenus pour le risque par ingestion.

VI.4.6 IDENTIFICATION DES VOIES D'EXPOSITION

Les voies d'exposition des populations aux polluants émis par l'installation dépendent :

- du milieu environnemental récepteur (émissions atmosphériques ou aqueuses);
- des propriétés des polluants émis (particulaires / gazeux, solubles/en suspension, volatils, organiques/minéraux, persistants, bioaccumulables...);
- des usages des milieux dans lesquels les polluants sont susceptibles de se disperser et de se transférer.

Il existe 3 voies d'exposition : l'inhalation, l'ingestion et la voie cutanée.

Le tableau suivant récapitule les voies d'exposition envisageables en fonction des propriétés des substances et des usages locaux.

Tableau 212. Voies d'exposition envisageables en fonction des propriétés des substances et des usages locaux

	Transforts possibles suite aux	Conditions relatives aux		
Ingestion possible de :	Transferts possibles suite aux émissions atmosphériques ou aqueuses	types de substances	usages dans la zone d'influence des émissions de l'installation	
Sol	• Dépôts atmosphériques	Particulaires persistantes : métaux	Jardins, potagers, etc.	
Fruits et légumes	 Absorption foliaire (gazeuse) Transferts racinaires (par le sol) Dépôts atmosphériques (particules) 	Particulaires et bioaccumulables : métaux	 Potagers, jardins familiaux, cultures 	
Viandes, œufs, lait et produits dérivés	Transferts suite à l'ingestion par l'animal de sol ou de végétaux (pâturages et aliments)	Particulaires ou gazeuses, et bioaccumulables : métaux	Élevages familiaux ou professionnels Pâturages ou cultures destinées à l'alimentation des animaux	

VI.4.7 SCHEMA CONCEPTUEL

<u>Définition</u>: un site présente un risque en termes d'effets sanitaires, seulement si les trois éléments suivants sont présents de manière concomitante :

- une source de polluants mobilisables présentant des caractéristiques dangereuses,
- des voies de vecteur de transfert : il s'agit des différents milieux (sols, cultures destinées à la consommation humaine ou animale, etc.) qui, au contact de la source de pollution, sont devenus à leur tour des éléments pollués et donc des sources de pollution secondaires.
 - Notons que dans certains cas, ces milieux ont pu propager la pollution sans pour autant rester pollués,
- la présence de cibles susceptibles d'être atteintes par les pollutions. Ces cibles potentielles concernant la population riveraine par contact direct (inhalation) ou indirect (ingestion) tels que les consommateurs de produits potagers dont les jardins sont situés dans la zone d'étude, les consommateurs d'œufs ou animaux élevés sur la zone d'étude.

L'identification des sources de pollution potentiellement dangereuses, des vecteurs et des cibles, réalisée sur la base des émissions et traitements présentés précédemment, fournit le résultat suivant :

Domaine	Emissions	Source de danger	Vecteur	Cible
	EIIIISSIOIIS			Riverains
Eau	Eaux usées domestiques	-	-	Oui
	Eaux pluviales	-	-	Oui
	Eaux industrielles	Oui	-	-
Air	Gaz de combustion des chaudières	Oui	Oui	Oui
	Rejets atmosphériques du process	Oui	Oui	Oui

Tableau 213. Identification des combinaisons source, vecteur et cible

Il s'avère que la combinaison source / vecteur / cible n'est identifiée que pour les émissions atmosphériques. Ainsi, seul le domaine de l'air est retenu dans le cadre de la présente étude.

La voie d'exposition par contact cutané n'est pas prise en compte.

Les substances retenues susceptibles d'être émises dans l'air sont des composés gazeux et particulaires issus de l'activité du site.

Au regard des lieux et des milieux d'exposition de la population, celle-ci peut être exposée aux rejets de l'installation :

- soit de façon directe par inhalation de substances inhalables (gazeuses ou particulaires) qui se dispersent dans l'air ambiant autour de l'installation,
- soit de façon indirecte par ingestion de substances particulaires par l'intermédiaire du sol et des denrées alimentaires directement contaminées par les dépôts secs et humides. Cette exposition considère une contamination du sol et de la chaîne alimentaire sur les jardins et les cultures environnants (les fruits et les légumes sont les aliments qui sont les plus susceptibles d'être consommés à proximité même de leur lieu de production selon une enquête de l'INSEE citée par la Société Française de Santé Publique).

Dans le cadre du projet, il n'y a pas de substance retenue dans les rejets aquatiques.

Le scénario conceptuel d'exposition des populations adapté au site est présenté à la page suivante.

Figure 125. Schéma conceptuel **Dispersion** Al, Sb, Cr, Co, Cu, Mn, Ni, V, Sn, Zn, Li, COVNM, COV issus du solvant 1, COV IVd, Poussières, HF, NOx, **Emissions canalisées** CO, O₃ Al, Sb, Cr, Co, Cu, Mn, Ni, V, Sn, Zn, Li, COVNM, COV issus du Ingestion: sol, Transferts multimédias Dépôts solvant 1, COV IVd, légumes, viande, lait (Métaux) Poussières, HF, O₃, Poussières, Al, Sb, Cr, Co, prise en compte des Cu, Mn, Ni, V, Sn, Zn, Li rejets des chaudières Inhalation: air au gaz naturel (NOx, feuilles, fruits, tubercules, fruits Sol Eau

KALIÈS KA22.04.021

Milieux (transferts)

Populations (expositions)

Sources (émissions)